
 

 

 

Polygenic indices in four 

national longitudinal cohorts  

 

 

User Guide (Version 1) 
 

August 2025 

 

 

 

 

 

IOE, Faculty of Education and Society 



 

 

Contact 

Data queries: help@ukdataservice.ac.uk  

Questions and feedback about this user guide: clsdata@ucl.ac.uk.  

Authors 

Tim T Morris, Gemma Shireby, Liam Wright, Aida Sanchez-Galvez, Georg Otto, 

David Bann. 

How to cite this guide 

Morris TT, Shireby G, Wright L, Sanchez-Galvez A, Otto G, Bann D. (2025). 

Polygenic indices in four national longitudinal cohorts. London: UCL Centre for 

Longitudinal Studies.  

Data citation and acknowledgement 

You should cite the data and acknowledge CLS following the guidance from 

cls.ucl.ac.uk/data-access-training/citing-our-data/. All outputs using CLS genetic data 

should cite this user guide and the following article: 

Shireby G, Morris TT, Wong A, Chaturvedi N, Ploubidis GB, Fitzsimmons E, 

Goodman A, Sanchez-Galvez A, Davies NM, Wright L, Bann D. Data Resource 

Profile: Genomic Data in Multiple British Birth Cohorts (1946-2001)-Health, Social, 

and Environmental Data from Birth to Old Age. medRxiv. 2024:2024-11. 

Centre for Longitudinal Studies 

Centre for Longitudinal Studies (CLS) 

UCL Social Research Institute 

University College London 

20 Bedford Way, London WC1H 0AL 

www.cls.ucl.ac.uk  

The UCL Centre for Longitudinal Studies (CLS) is an Economic and Social Research 

Council (ESRC) Resource Centre. It is home to a unique series of UK national cohort 

mailto:help@ukdataservice.ac.uk
mailto:clsdata@ucl.ac.uk
https://cls.ucl.ac.uk/data-access-training/citing-our-data/
http://www.cls.ucl.ac.uk/


 

 

studies. It is part of the UCL Social Research Institute, based at the IOE, UCL’s 

Faculty of Education and Society.  

This document is available in alternative formats. Please email the 

Centre for Longitudinal Studies at clsdata@ucl.ac.uk. 

https://www.ucl.ac.uk/ioe/departments-and-centres/departments/ucl-social-research-institute
https://www.ucl.ac.uk/ioe/ioe-faculty-education-and-society
https://www.ucl.ac.uk/ioe/ioe-faculty-education-and-society
mailto:clsdata@ucl.ac.uk


 

 

Acknowledgements 

The CLS cohorts are only possible due to the commitment and enthusiasm of their 

participants; their time and contribution are gratefully acknowledged. We thank 

colleagues in the Centre for Longitudinal Studies Research Data Management 

Team, Survey, Cohort Maintenance, Administrative, and Communications teams; 

and colleagues at the University of Bristol for their work on biosample assay and 

storage. 

  



 

 

Contents 

1. Introduction .......................................................................................................... 7 

2. Project background .............................................................................................. 8 

2.1 Rationale ........................................................................................................... 8 

2.2 The human genome .......................................................................................... 8 

2.3 Genome-wide Association Studies (GWAS) ..................................................... 9 

2.4 Polygenicity ..................................................................................................... 10 

2.5 Polygenic indexes ........................................................................................... 10 

3. Derivation of polygenic indexes ....................................................................... 11 

3.1 PGI theory ....................................................................................................... 11 

3.2 Linkage Disequilibrium .................................................................................... 11 

3.3 PGI transformation .......................................................................................... 12 

3.4 CLS PGI pipeline ............................................................................................ 12 

3.5 Sample sizes ................................................................................................... 13 

3.6 List of PGI traits .............................................................................................. 13 

4. Guidance on interpreting PGIs .......................................................................... 16 

4.1 Interpreting PGIs ............................................................................................. 16 

4.2 Ancestry and genetic similarity ........................................................................ 17 

4.3 Suggested wording for outputs using the CLS PGI repository ........................ 17 

5. Description of the research datasets ............................................................... 19 

5.1 Licensing and data access .............................................................................. 19 

5.2 List of datasets ................................................................................................ 19 

5.3 Identifiers ........................................................................................................ 20 

5.4 Variable names and labels .............................................................................. 20 

5.5 Missing values ................................................................................................ 21 



 

 

6. Reproducibility ................................................................................................... 22 

7. References .......................................................................................................... 23 

8. Appendix ............................................................................................................. 29 



 

7 
 

1. Introduction 

This document describes the process by which polygenic indexes (PGIs) for 44 traits 

have been constructed in four UK longitudinal cohort studies that follow large 

nationally representative groups of people since birth. Three of these are national 

birth cohort studies initiated in 1958 (National Child Development Study, 1958c) 1 

1970 (British Cohort Study, 1970c) 2,3 and 2000 (Millennium Cohort Study, 2001c) 4 

and one is a cohort born in 1989-90 followed up from adolescence (Next Steps, 

1989c) 5.  

The PGIs have been developed using a consistent methodology that has been 

applied to harmonised genetic data across each cohort, enabling researchers to 

engage in consistent cross-cohort analysis for using derived genetic measures for 

the first time. All PGIs have been derived from large scale Genome-wide Association 

Studies (GWAS) with publicly available summary statistics. Through this approach 

we hope to enable and encourage wider use of the genetic data collected in these 

studies. We also provide high level guidance on the use and interpretation of PGIs.  

The PGIs were also developed in a consistent manner in a birth cohort born in 1946 

(MRC National Survey of Health and Development, 1946c) 6, which can be obtained 

by separate application to the Unit for Lifelong Health and Ageing at UCL. 

  

https://nshd.mrc.ac.uk/data-sharing/
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2. Project background 

2.1 Rationale 

Biosamples such as blood and saliva are now commonly collected from participants 

in cohort and longitudinal studies, from which genome-wide genetic information is 

derived via genotyping. However, these studies are often highly selective or not 

nationally representative, limiting the generalisations that can be drawn from their 

data. The availability of genetic data from large scale nationally representative 

datasets with known sampling distributions such as those included in this data 

release therefore offers unique opportunities for research.  

The increasing availability of genetic data has enabled a wide range of analyses that 

have improved our understanding of human biology. The overwhelming majority of 

human traits analysed in genetic studies have been shown to implicate multiple 

genetic variants that each explain a very small amount of statistical variance in the 

trait. This pattern of traits being associated with multiple variants is termed 

polygenicity, and the effects of these variants can be combined into a single score 

that represents the known genetic predisposition to a trait known as a polygenic 

index (also “polygenic scores” or “polygenic risk scores”; we opted to use the term 

‘index’ to avoid value judgments that ‘score’ can imply) 7. Polygenic indexes have 

become an increasingly popular tool by which researchers can better understand 

human behaviour and use methods that compliment ‘traditional’ observational or 

survey-based approaches which do not directly measure genetic factors 8.  

2.2 The human genome 

The human genome is composed of Deoxyribonucleic acid (DNA), which is 

organized into structures called chromosomes and stored within our cells. Most 

people possess 23 pairs of chromosomes, with one set inherited from each 

biological parent. DNA itself is formed from two intertwined strands, structured as a 

double helix, and made up of units known as nucleotides. These nucleotides differ 
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based on one of four chemical bases: adenine (A), cytosine (C), guanine (G), and 

thymine (T).  

While the human genome includes roughly 3.2 billion nucleotide base pairs, the 

overwhelming majority of these are the same across all individuals. The points of the 

genome at which nucleotide base pairs differ – the sites of genetic variation - are 

known as single nucleotide polymorphisms, or SNPs (pronounced “snips”). At these 

points, individuals may have different chemical bases (e.g., an A instead of a G), and 

the versions present are referred to as alleles. Because chromosomes come in pairs, 

each person can carry zero, one, or two copies of a particular allele at any given 

SNP.  

2.3 Genome-wide Association Studies (GWAS) 

To understand the construction of PGI it is first necessary to understand GWAS. 

GWAS are large-scale projects that combine data from collections of individuals – 

often from multiple cohort and longitudinal studies - who have provided genetic and 

survey or direct assessment-based (phenotypic) data. GWAS sizes are often on the 

order of millions of participants, with the largest sample size to date being 5.4m 9. 

For each trait a regression is run at each SNP in a discovery phase where the trait 

(e.g., height) is the dependent variable and the count of effect alleles (i.e. 0, 1, 2) is 

the independent variable. Given the number of SNPs in the human genome that are 

measured by genotyping arrays (on the order of millions), stringent p-value 

thresholds are applied by GWAS to account for multiple testing, typically at p<5x10-8. 

Individuals can be pooled into a single sample or these GWAS effects meta-

analysed across samples. For each SNP, GWAS produce an estimate of the 

average effect size for each additional effect allele across the sample.  

To reduce risks of overfitting within the sample and to test generalisability, GWAS 

perform out-of-sample validation on cohort or longitudinal studies that are not 

included in the discovery phase. This step helps to ensure that the effect sizes 

identified in the discovery phase are consistent in an independent sample. GWAS 

will usually report the predictive performance of the combined estimates in the 
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independent as the amount of variation that they explain in the trait (𝑅2) over 

independent variables such as age and sex.  

GWAS effect sizes are commonly published as publicly available GWAS summary 

statistics that are available through online resources such as the NHGRI-EBI GWAS 

Catalogue and the IEU OpenGWAS project.  

2.4 Polygenicity 

GWAS have demonstrated that most human traits are implicated by a wide range of 

genetic variants i.e., they are polygenic. That is, traits for which there can be 

considered to “be a single genetic variant for” are the exception rather than the norm. 

Examples of single-gene conditions include cystic fibrosis and Huntington’s disease. 

Polygenic traits are characterised by many (often thousands) of SNPs that each 

have a very small effect size. For example, the largest GWAS to date implicated 

12,111 independent SNPs associated with height 9. 

2.5 Polygenic indexes 

PGIs aggregate GWAS estimates across all measured SNPs to provide a single 

estimate of an individual’s genetic predisposition towards the trait under study. As 

such, SNPs can be considered as the building blocks of PGIs. It is important to note 

that the genetic predisposition represented by PGI is known inasmuch as it has been 

estimated accurately and reliably from a GWAS; not all SNPs are included in the 

GWAS or the GWAS estimates for a given SNP are inaccurate, then the genetic 

predisposition represented by the PGI will be lower than the true genetic 

predisposition.  

  

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://gwas.mrcieu.ac.uk/


 

11 
 

3. Derivation of polygenic indexes 

3.1 PGI theory 

The central model underlying the construction of PGIs is as follows: 

𝑃𝐺𝐼𝑖 =∑𝛽𝑗𝐺𝑖𝑗

𝑀

𝑗=1

 

Where 𝑃𝐺𝐼𝑖 is the estimated PGI for individual 𝑖 calculated as the sum over 𝑀 SNPs, 

where each SNP 𝑗 is weighted by its effect size 𝛽𝑗 (estimated from GWAS) and 

multiplied by the number of risk-increasing alleles 𝐺𝑖𝑗 (0, 1, or 2) that individual 𝑖 

carries at SNP 𝑗. As such, every PGI contains data from two sources: the external 

input GWAS (known as the ‘base data’), and the genotypes of individuals within the 

sample (known as the ‘target data’). By summarising the count of alleles at multiple 

SNPs, PGI approximate continuous variables that are normally distributed in the 

population. 

3.2 Linkage Disequilibrium 

To ensure the predictive validity of PGIs, it is important to account for Linkage 

Disequilibrium (LD): the non-random association of genetic variants that are located 

near each other in the genome and tend to be inherited together. LD can lead to 

overlapping genetic signals being counted multiple times, which may inflate the 

influence of certain genomic regions in the PGI 10. The derivation of PGIs is an active 

area of research and multiple methods now exist to both generate PGIs and account 

for LD 11. Existing guides and reviews provide overviews of these methods 11–13, as 

well as discussing the relevance of PGIs to social science 8,14.  

The current version of the CLS PGI repository uses a clumping and thresholding 

(C+T) approach to account for LD when generating PGIs. Clumping selects one 

representative SNP from a set of highly correlated SNPs (based on a specified LD 

threshold) to minimise effects due to LD. Thresholding refers to the selection of 
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SNPs from a GWAS to be used in a PGI, for example all SNPs whose estimates 

meet a threshold of GWAS significance (p<5x10-8).  

3.3 PGI transformation 

To ease interpretation, PGIs are often standardised in the sample to standard 

deviation / z scores (mean of 0 and SD of 1): 

𝑃𝐺𝐼𝑖
𝑠𝑡𝑑 =

𝑃𝐺𝐼𝑖 − 𝑃𝐺𝐼̅̅ ̅̅ ̅

𝜎𝑃𝐺𝐼
 

The PGIs calculated by the CLS PGI pipeline are presented in raw format; it is 

recommended that analysts standardise these prior to use.  

3.4 CLS PGI pipeline 

The full pipeline code by which PGIs were derived is provided on the CLS GitHub. 

Briefly, the below steps were taken by the pipeline and applied to the genetic data 

that had been quality controlled as outlined by 15.  

1. Preparation of the trait list from which PGIs were to be derived. This involved 

downloading GWAS summary statistics and formatting the trait list in such a way 

that it could be read by the pipeline.  

2. Download reference files for GRCh38 Genome Reference Consortium Human 

Build 38 and subset chromosome 3 for checking genome builds of the GWAS 

summary statistics.  

3. Creation of a harmonised SNP list across all cohorts to be used in cross-cohort 

harmonised PGIs (harmonised SNP n=6,702,716) to optimise cross-cohort 

comparability. Note that in this first release of the CLS PGI repository PGIs are 

only provided for cohort participants who are more genetically similar to 1000 

Genomes Phase 3 samples labelled as European and self-report as being of a 

white ethnic background.  

4. Genome build conversion to GRCh38 and quality control of the GWAS summary 

statistics for each trait. 

https://github.com/CLS-Data/CLS_PGI_repository
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5. Generation of PGIs using PRSice2. Multiple PGIs were generated for each trait, 

as follows:  

a. Using the maximum SNP lists for each cohort independently and using the 

harmonised SNP lists across all cohorts.  

b. Across five p-value thresholds (p<5x10-8; p<5x10-5. p<0.05; p<0.01; p=1).  

3.5 Sample sizes 

Table 1 below shows the maximum and minimum SNP coverage within and across 

all cohorts restricting to variants with valid rsID’s. 

Table 1. SNP coverage in the cohorts (valid rsID’s) 

Cohort 
N (maximum available SNP 

coverage within each cohort) 

N (harmonised SNP 

coverage across all 

cohorts) 

NCDS 7,545,089 6,703,052 

BCS 8,094,234 6,703,052 

Next Steps  8,084,092 6,703,052 

Millennium Cohort Study 8,412,240 6,703,052 

3.6 List of PGI traits 

Table 2 below lists the PGIs created for the cohort studies. We chose a range of 

traits that are applicable to a broad range of disciplinary specialities and have been 

studied in large-scale GWAS. 

Traits included in the CLS PGI repository will increase in future as further GWAS 

studies become available. For the most up to date information on GWAS included 

please see the GitHub page at https://cls-genetics.github.io/.  

PGI’s are available for all cohort members (and in the MCS, the cohort members 

biological parents) who provided biosamples that passed all quality control steps.  

 

 

https://cls-genetics.github.io/
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Table 2. Polygenic index traits 

Domain Trait Reference 

Anthropometrics 

Birth weight 16 

Body fat distribution 17 

Body Mass Index (childhood) 18 

Body Mass Index (adulthood) 19 

Grip strength 20 

Height 19 

Waist circumference 21 

Brain structure 

and cognition 

Alzheimer’s disease 22 

Cognition 23 

Hippocampal volume 24 

Parkinson’s disease 25 

Health 
behaviours 

Substance abuse 26 

Age at initiation of smoking 27 

Alcoholic drinks per week 27 

Cigarettes per day 27 

Diet 28 

Mental health 

Anxiety 29 

ADHD 30 

Autism spectrum disorder 31 

Bipolar disorder 32 

Depressive symptoms 33 

Externalising problems 34 

Major depressive disorder 35 

Schizophrenia 36 

Personality 

Agreeableness 37 

Conscientiousness 37 

Extraversion 37 

Openness to experience 37 

Neuroticism 37 

Physical health 

 

Age at menopause 38 

Asthma 39 

Blood pressure 40 

Coronary artery disease 41 
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Domain Trait Reference 

C-reactive protein 42 

Fasting glucose 43 

HbA1c 44 

Hypertension 45 

Rheumatoid arthritis 46 

Type 1 Diabetes 47 

Type 2 Diabetes 48 

Social 

outcomes 

Education 49 

Household Income 50 

Human Longevity 51 

Parental Lifespan 52 
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4. Guidance on interpreting PGIs 

4.1 Interpreting PGIs 

We encourage users to read previous guides and tutorials which describe in detail 

how PGIs could be used and how they should and should not be interpreted 12–14. 

Users should also read and familiarise themselves with the CLS Resource Profile 

paper which discusses the genetic data underlying the PGI and potential uses of 

cohort data in genetically informed designs 15. Users of MCS data are also advised 

to refer to 53 which contains detailed information on collection of the biological data, 

protocols, and response patterns. 

PGI are probabilistic summary indicators of genetic predisposition towards traits and 

as such users should avoid any overextrapolation of results or genetic determinism 

when using the PGIs. Because of LD and genotyping coverage PGI will typically 

capture both causal and non-causal variants. Furthermore, PGIs for complex and 

biologically distal traits have been shown to be inflated by population level 

demographic and familial factors, including population stratification, which can bias 

GWAS estimates and inflate PGI associations 54–56. 

Users are strongly encouraged to review the GWAS paper(s) used to construct the 

PGI(s) they use. PGIs should be interpreted in the context of the underlying GWAS, 

specifically its sample composition and size, trait (phenotype) definition and 

measurement, sample ancestry and the statistical methods used. Users should also 

check whether the GWAS paper used contains CLS cohorts: this is very unlikely to 

be the case for more recently genotyped cohorts (1970c, 1989c, 2001c) but is more 

likely for 1958c which was part of the Wellcome Trust Case Control Consortium 57. 

The PGIs have been released as raw scores to enable users to apply multiple 

imputation and/or Inverse Probability Weighting to their projects. We recommend 

that users transform the PGIs to z scores prior to analyses for ease of interpretation. 

For further information and detailed guidance on the use of multiple imputation and 

Inverse Probability Weighting in the CLS cohorts, please see the Handling Missing 

Data section on the CLS website. 

https://cls.ucl.ac.uk/data-access-training/handling-missing-data/
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4.2 Ancestry and genetic similarity 

Many existing GWAS (from which our PGI are derived) have restricted their study 

samples to groups that are relatively genetically homogenous. These samples are 

often described in terms of “genetic ancestry”, which is commonly assigned using 

arbitrary cutoffs of genetic similarity to other groups of individuals from a reference 

database such as the 1000 Genomes Phase 3. That is, genetic ancestry labels are 

heavily simplified statistical modelling constructs drawn from external sources. An 

individual labelled as “European genetic ancestry” is simply defined as such by virtue 

of having a genotype that is more similar to individuals in a reference dataset who 

are also labelled as “European”. For an excellent discussion of genetic similarity and 

ancestry, users are recommended to read 58, and for detailed guidance on the use of 

population descriptors in genetic research, to read 59. While this approach is 

somewhat blunt and reductive, it can be necessary given the difficulty of accurately 

modelling real-world complexity and the need to simplify reality to meet modelling 

assumptions (e.g., of relatively homogenous samples). 

This first release of the CLS PGI repository contains PGIs only for cohort participants 

(and in the case of the MCS, the cohort participant’s biological parents) who are 

genetically similar to 1000 Genomes Phase 3 samples labelled as European as 

defined using an elastic net model and <4 standard deviations of the mean of the 

first principal component of genetic similarity. The decision to only include these 

individuals in the first release was because of inconsistencies in the performance of 

PGIs across broader population groups and the potential subsequent introduction of 

bias to studies. Table A1 in the appendix displays the number of individuals whose 

samples passed QC in the CLS cohorts that have been included/excluded in the 

CLS PGI repository. 

4.3 Suggested wording for outputs using the CLS PGI 

repository 

Given that the CLS PGI repository currently only contains PGIs for a subset of 

individuals across the cohorts, researchers are encouraged to note this, the potential 
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limitations, and provide a brief explanation. Below we provide an example that 

researchers may wish to build upon.  

Our study was limited to individuals who were genetically similar to European 

samples in 1000 Genomes Phase 3 as defined using an elastic net model (delete as 

appropriate) in order to minimise sample heterogeneity and limit bias due to 

differential PGI performance across study individuals / to aid comparability with 

previous studies / given the use of less diverse cohorts / since comparable polygenic 

indexes were not available for all individuals. This limits the generalisability of our 

findings to the broader population. As genetic knowledge improves across the 

genetic similarity spectrum, future research should extend these findings to the entire 

population. 
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5. Description of the research datasets 

5.1 Licensing and data access 

The PGI datasets have been processed by CLS and supplied to the UK Data Service 

(UKDS). All data users need to be registered with the UK Data Service and to sign 

the UKDS End User Licence. Details of how to do this are available at the UKDS 

website.  

The PGI datasets have been pseudonymized and are available from the UKDS as 

special safeguarded data, which are subject to the UKDS Special Licence. The 

UKDS Special Licence application form requires information on the goals of the 

research project, and should address any risks related to the ethical, sensitive and/or 

disclosive nature of the research topic, explaining how these will be managed or 

mitigated. For guidance on how to manage these risks, please refer to Section 6.6 

(Research with disclosive data or in socially controversial areas) of the CLS Data 

Access Framework. Once the form has been reviewed by UK Data Service and 

approved by the CLS Data Access Committee the data will be available to download. 

5.2 List of datasets 

Datasets are in a wide format i.e., a single row per participant. The datasets 

available in this release are listed in Table 3 below.  

Table 3: List of available datasets   

Name of the dataset  Content summary 

CLS_PGI_v1_NCDS Polygenic indices in NCDS  

CLS_PGI_v1_BCS Polygenic indices in BCS70 

CLS_PGI_v1_MCS Polygenic indices in the Millennium Cohort Study 

CLS_PGI_v1_NS Polygenic indices in Next Steps 

file:///C:/Users/Tim%20Morris/Downloads/ukdataservice.ac.uk/get-data/how-to-access/registration
file:///C:/Users/Tim%20Morris/Downloads/ukdataservice.ac.uk/get-data/how-to-access/registration
https://cls.ucl.ac.uk/wp-content/uploads/2017/02/CLS_Data_Access_Framework.pdf#page=37.08
https://cls.ucl.ac.uk/wp-content/uploads/2017/02/CLS_Data_Access_Framework.pdf#page=37.08
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5.3 Identifiers 

For all cohorts the data are identified with the same research IDs used for the rest of 

cohort data available at the UK Data Service (e.g., NCDSID for NCDS). This enables 

the data to be merged with one another datasets held on UKDS. Note that the MCS 

uses family identifiers (MCSID) and the two individual person identifiers 

(CNUM00/PNUM00). Further information on merging is available in the CLS data 

management GitHub repository and the MCS Data Handling Guide.  

5.4 Variable names and labels 

The variable naming convention is consistent across the datasets, designed such 

that the specific PGI that a researcher is using can always be traced back to source 

in future versions of the CLS PGI repository. The variable names contain the 

following elements: 

• Cohort 

• If PGI is from harmonised SNP list 

• Trait name 

• p value threshold 

• PGI repository version 

For example, the NCDS harmonised PGI for height at a p value threshold of p<5x10-

8 would be named ncds_hmz_eight_p5e08_v1. 

The variable labelling convention is consistent across the datasets, consisting of the 

following elements: 

• If PGI is from harmonised SNP list 

• Trait name 

• GWAS author and year 

• p value threshold 

https://cls-data.github.io/
http://doc.ukdataservice.ac.uk/doc/8682/mrdoc/pdf/mcs_data_handling_guide_ed1_2020-08-10.pdf
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For example, the NCDS harmonised PGI for height at a p value threshold of p<5x10-

8 would be labelled as Harmonised PGI for height from Yengo et al (2018) at 

p5e08.  

5.5 Missing values 

Missing values are present for all individuals who did not provide biosamples or 

whose samples did not pass quality control checks.  
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6. Reproducibility 

To maximise transparency and reproducibility, the code pipeline to generate all PGIs 

in this data release from the source genetic data is available on the CLS Data 

GitHub. The pipeline can be cloned and applied by users with access to the full 

genomewide genetic data to generate further PGIs that are not part of the repository 

in a consistent manner. The pipeline contains a detailed readme and requires 

minimal user input to run.  

   

https://github.com/CLS-Data/CLS_PGI_repository
https://github.com/CLS-Data/CLS_PGI_repository
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8. Appendix 

Table A1: Samples included/excluded in the CLS PGI repository across the 

CLS studies. 

Cohort 

Individuals 

passed genetic 

QC 

Individuals 

excluded from PGI 

repository* 

Individuals 

included in PGI 

repository* 

NCDS 6,396  72 6,396 

BCS 5,598  237  5,361 

Next Steps  1,568  296 1,272 

Millennium Cohort 

Study 
20,247  3,142 17,105 

 

* Individuals were included in the CLS PGI repository if they were genetically similar to 

European samples in 1000 Genomes Phase 3 using an elastic net model, and <4 standard 

deviations from mean of the first principal component of population structure. 
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