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1. INTRODUCTION  

1.1. Overview 

This document describes the construction of polygenic scores (PGSs) for a number of 

behavioural, emotional and health-related phenotypes in the English longitudinal study of 

ageing (ELSA) study. The methods employed for creating PGSs descried herein are those 

outlined by the Health and Retirement Study (HRS)[1]. This was done in order to harmonise 

the research across age-related longitudinal studies by adopting a consistent methodology for 

creating PGSs. By making these PGSs publicly available, it is hoped that they will facilitate 

wide use among the ELSA data users. PGSs for each phenotype are based on a single, 

replicated genome-wide association study (GWAS). These scores will be updated as 

sufficiently large GWAS are published for new phenotypes or as updated meta-analyses for 

existing phenotypes are released. This document describes the methodology employed in 

creating PGSs through quality control to construction of the PG scores and presents an 

overview of PGSs for these phenotypes in ELSA.  

 

1.2. Rationale  

Recent advances in technology have allowed the systematic hypothesis-free testing of genetic 

variants across the entire human genome for association with various traits measured on 

unrelated individuals [2-4]. However, for many complex genetic traits the well-powered 

GWASs did not identity individual markers that exceeded the Odds Ratio (OR) of more than 

1.2, which is lower than initially anticipated (i.e., OR between 1.5-2) [5]. This in turn raised the 

question whether common variants in combination are of greater importance in the 

development of the phenotype than single variants with a large effect [3]. Indeed, many health 

and behavioural outcomes, such as smoking, obesity, Alzheimer’s disease and schizophrenia, 

have been shown to be highly polygenic[2] implying that their genetic architecture consists of 

“many” genetic variants. Creating PGSs is a method that captures this signature. The methods 

that we employed for creating PGSs in the ELSA study will be described in more detail in 

Section 3.  

 

1.3. The use of PGSs in scientific research 

PG scores are usually constructed from a weighted sum of allelic count [3, 4, 6] and are 

presented as continuous scores. They are specific to each individual and represent an 

individual load for the common variants that are associated with a trait under study. PG scores 

are increasingly used to predict disease risks [6]. This is usually done through linear regression 

analyses where the PGS for a given trait is used a predictor for an outcome adjusting the 

analyses for various covariates, which usually age, gender and principal components to 

account for any ancestry differences in genetic structures that could bias results [7] (for more 

detail about principal components, please refer to Section 2.4.3.). Another popular way if using 

the PGSS is to derive a binary predictor from the continuous PGS, where the top 10% or 20% 

of the PGS is coded as “high risk” group and the remaining is coded as “low risk” group based 

on an individual loading for the common SNPs. In turn, genomic prediction of disease risks 

might have implications in designing more individualised preventive or screening strategies 

for patients [6]. For example, earlier screening for breast cancer may be warranted for those 

having a high genetic risk for the disease as measuring the PGS [8]. Furthermore, PGSs have 

been shown to be suitable for a number of scientific aims beyond the risk prediction including 

identification of shared aetiology among traits using such an analytical tool as GCTA 
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(Genome-wide Complex Trait Analysis)[9], testing for genome-wide G*E and G*G 

interactions[10], Mendelian Randomisation to infer causal relationships, and for patient 

stratification and sub-phenotyping[8, 11]. Thus, PGSs represent not only an individual genetic 

prediction of phenotypes but open possibilities for interrogating a wide range of hypotheses 

via association testing. 

2. GWAS QUALITY CONTROL  

2.1. Study participants  

The English Longitudinal Study of Ageing (ELSA) is a large, multidisciplinary study of cohort 

of men and women living in England aged 50 or over and representative of the English 

population both in terms of socioeconomic profile and geographic region [12]. The study 

commenced in 2002 and the cohort was then followed-up every two years, with periodic 

refreshments to maintain the age profile. Since 2002 there have been 8 waves of data 

collection providing detailed information on health, well-being, and socioeconomic 

circumstances. Further, the ELSA study has been modelled on the US Health and Retirement 

Study (HRS) [13]. This was done to facilitate harmonisation with the HRS study and other 

ageing studies, and thus to promote international comparisons in the age-related outcomes 

across the population-based cohorts. 

 

2.2. Consent and Administration Procedures  

The ELSA participants were eligible for blood data collection if they had successfully 

completed the nurse visit and gave consent for blood samples to be taken. The respondents 

were not eligible to have a blood sample taken if they: 1) had a clotting or bleeding disorder, 

2) ever had a fit or convulsion, 3) were taking anticoagulant drugs (such as Warfarin, 

Protamine or Acenocoumarol), or 4) were pregnant. If the ELSA participants were eligible to 

have a blood sample, nurses then determined whether they were eligible to fast. Those 

respondents who were determined to be eligible to fast, were instructed not eat, smoke, drink 

alcohol or do any vigorous exercise 30 minutes before giving the blood sample. The 

responders were exempted from fasting if they: 1) were aged 80 or over, 2) were diabetic and 

on treatment, or 3) were malnourished or otherwise unfit to fast (as judged by the nurse). All 

respondents could still drink water and take their medication as normal.  

 

2.3. Genotyping Process 

The genome-wide genotyping was performed at University College London (UCL) Genomics 

in 2013-2014. This involved genotyping of 7,597 ELSA participants of European ancestry 

using the llumina HumanOmni2.5 BeadChips (HumanOmni2.5-4v1, HumanOmni2.5-8v1.3), 

which measures ~2.5 million markers that capture the genomic variation down to 2.5% minor 

allele frequency (MAF). Genotyping was performed in two batches. Allele frequencies were 

compared between the batches after filtering for 5% of missingness. The correlation was 

calculated between the batches for a number of chromosomes and exceeded 99%. After post-

genotyping quality assurance, such as excluding ethnic outliers (self-reported) and duplicates, 

the GWAS data was available for total 7,412 ELSA participants and 2,230,767 SNPs.  
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2.4. GWAS Quality Control  

Before the GWAS data was utilised for creating PGSs, a thorough quality control (QC) [14] at 

both individuals and single-nucleotide polymorphism (SNPs) levels was carried out using 

PLINK 1.9 [15]. The full QC procedure is depicted in Figure 1.  

Figure 1. QC steps that were undertaken as part of quality control in ELSA  

 
 

2.4.1. QC based on individual level  

The samples for whom the recorded sex phenotype was inconsistent with genetic sex were 

removed. Duplicated samples and cryptic relatedness between each pair of participants was 

evaluated using pairwise genome-wide estimates of three coefficients corresponding to the 

probabilities of sharing 0, 1 or 2 alleles between two individuals that are identical by descent 

[16]. There are two methods for estimating the identical by descent (IBD) probabilities - method 

of moments and method of maximum likelihood. Both methods have been shown to give very 

similar results [17]; thus, we report results from method of moments implemented in PLINK 

1.9 [15]. IBD were estimated using autosomal SNPs where IBD=1 highlights presence of 

duplicates or monozygotic twins, IBD=0.5 shows that first-degree relatives are present in the 

sample, IBD=0.25 and IBD=0.125 highlights presence of second-degree and third-degree 

relatives, respectively [18]. Owing to genotyping error, linkage disequilibrium (LD) and 

population structure, it is expected to observe some variations around these theoretical values. 

Therefore, it is normal to remove one individual from each pair with an IBD value of >0.2, 

which is halfway between the expected IBD for third- and second-degree relatives [14]. We 

identified individuals with an IBD value of >0.2 and excluded one of each pair at random.  

 

2.4.2. QC based on SNP level  

Heterozygosity refers to carrying of two different alleles of a specific SNP. Excessive 

heterozygosity may imply a sample contamination, while less heterozygosity than expected 

may imply inbreeding [14]. In the ELSA study, the checks for heterozygosity were performed 

on a set of SNPs which were non-(highly) correlated. To generate a list of non-(highly) 

correlated SNPs, we excluded four regions that are known to contain clusters of highly 

correlated SNPs. These were the Lactase Gene (LCT) (chromosome 6, 12578740 to 

135837195 bp), human leukocyte antigen (HLA) (chromosome 2, 2550000 to 3350000 bp) 
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and two inversion regions located on 8p23.1 (chromosome 8, 81305000 to 1200000 bp) and 

17q21.31 (chromosome 17, 40900000-45000000 bp) [19]. We then pruned the SNPs using 

the ‘10 5 0.1’ parameters. These pruning parameters use a sliding window method that 

considers blocks of 10 SNPs and removes SNPs with r2 >0.10 afterward shifting the window 

by 5 SNPs. Those individuals with extremely low or high heterozygosity score (>3 standard 

deviations from the mean) were removed. Further, the genotyped data with a call rate of <98% 

was removed. SNPs in sex chromosomes and SNPs with a minor allele frequency (MAF) of 

<0.01 were excluded. SNPs whose genotype distributions deviated significantly from the 

Hardy-Weinberg equilibrium (HWE) (p<10-4) and with missingness <0.02 were also removed. 

Finally, to ensure a large overlap between the GWAS summary statistics (i.e., base file) and 

the ELSA (i.e., target) data, we have converted all present platform specific ids (i.e., kgps) to 

rsids. However, not all kgps were able to be successfully updated; those SNPs for which the 

kgps were not updated were removed.  

 

2.4.3. Population structure 

To investigate population structure, we use principal components analysis (PCA) [7] 

implemented in PLINK 1.9 [15]. We used the PCA approach with two aims; first, to identify 

those individuals who deviated from the ethnic population they self-reported to be (i.e., ethnic 

outliers), and second, to provide sample eigenvectors which will then be used for adjusting for 

possible population stratification in the association analyses [7, 20]. It has been shown that in 

PCA, the usefulness of certain principal components (PCs) may be limited by clusters of highly 

correlated SNPs at specific locations, such as the LCT, HLA, 8p23.1 and 17q21.31 [17, 19] in 

whole-genome arrays [19]. To address this pitfall, the SNPs that were used in PCA were 

selected by LD pruning from an initial pool consisting of all autosomal SNPs with a missing 

call rate <5% and MAF >5%. In addition, the 2q21 (LCT), HLA, 8p23, and 17q21.31 regions 

were excluded from this initial pool. The LD pruning process, using all unrelated ELSA 

participants selected 147,070 SNPs with all pairs having r2 <0.1 in a sliding 10 Mb window. 

PCs were obtained using PLINK software; we retained the top 10 PCs to account for any 

ancestry differences in genetic structures that could bias results [7]. Initially, we performed 

PCA on all study subjects; however, the visual inspection of the PCs distribution highlighted 

the present of ancestral admixture in the 65 individuals. We removed these outliers and re-

calculated PCs using the updated samples (Supplementary Figure 1.). 

 

2.5. Summary of QC  

After these QC steps 7223 (97.5% n=7412) individuals and 1,374,524 (61.5% of n=2230767 

SNPs) directly genotyped SNPs remained for further analyses. The biggest proportion of the 

lost SNPs was due to MAF (34.1%); the remaining QC criteria led to loss of 0.1-2.2% of 

genotyped SNPs. The loss of ELSA participants was very minimal (between 0.07% and 1.0% 

of the total sample depending on the QC steps). Additionally, for 41 participants the ELSA 

Unique IDs was not available; these individuals were removed leaving the final sample of 

7183.  
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Table 1.  An overview of the summary of full QC procedure employed in the ELSA study 

and how many variants and/or participants were lost at each step.  

Quality Control steps in ELSA 

Lost due to SNP-based QC n % 

  Missing SNPs (0.02) 41614 1.87 

  Autosomal SNPs 48578 2.18 

  MAF 0.01 759972 34.07 

  Update rsids 2284 0.10 

  HWE (0.0001) 6079 0.27 

    

  Total removed 858527 38.49 

 Total remaining 1372240 61.51 

     

Lost due to Individual-based QC   

  Missingness (0.02) 39 0.53 

  Heterogeneity  76 1.03 

  Sex discordance 5 0.07 

  Ancestry outliers 64 0.86 

  Relatedness/Duplicates 5 0.07 

 Unique IDs are not present  41 0.50 

    

  Total removed  229 3.09 

  Total remaining 7183 96.91 

HWE, Hardy-Weinberg equilibrium; MAF, minor allele frequency; SNP, single nucleotide 

polymorphisms 
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3. POLYGENIC SCORE (PGS) 

3.1. Overview of methodology  

Polygenic scores (PGS) can be defined as a single value estimate of an individual’s propensity 

to a phenotype, calculated as a sum of their genome-wide genotypes weighted by 

corresponding genotype effect sizes from GWAS summary statistics [3, 21]. Therefore, PGS 

analyses can be characterised by the two input data sets: 1) base (GWAS) data; these are 

summary statistics (e.g., betas, p-values) of genotype-phenotype associations at genetic 

variants (i.e., SNPs) in GWAS, and 2) target data; these are genotypes and phenotype(s) in 

individuals of the target sample (i.e., herein the ELSA data). A PGS is then calculated for each 

individual in the target sample following the formula outlined below:  

 

PGS𝑖 =∑𝑊𝑗𝐺𝑖𝑗

𝑗

𝑗=1

 

 

where i is individual i (i=1 to N), j is SNP j (j=1 to J), W is the meta-analysis effect size for SNP 

j and G is the genotype, or the number of reference alleles (0, 1, or 2), for individual i at SNP 

j. The profile score is then evaluated through regression of the target sample phenotype on 

the PGS after accounting for other known covariates. 

 

Because SNP effects are estimated with some uncertainty and not all SNPs influence the trait 

under study, PGSs are calculated at different pre-specified significance threshold of quality 

controlled and autosomal SNPs [3]. This in turn allows testing associations with the target trait 

for each threshold and thus optimising the prediction. Accordingly, we performed PGSs based 

on threshold of p-values of 0.001, 0.01, 0.05, 0.1, 0.3, and 1 employing methodology as 

originally described [1, 3]. Nonetheless, the HRS team examined four traits with large 

published and replicated GWASs (i.e., height, body mass index, educational attainment, and 

depression) demonstrating that PGSs that included all available SNPs either explained the 

most amount of variation in an outcome or were not significantly different from the PGSs that 

PGSs calculated at different p-value threshold. Thus, for reproducibility through rigor and 

transparency, they recommended that researchers include a PGS with all available SNPs as 

a reference, and provide substantial justification for using alternative methods[1]. Following 

this recommendation, we will make available the PGSs calculated for p-value threshold of 1. 

All the results related to PGSs reported herein will be based on this threshold.  

 

Similarly to the HRS study[1], unless otherwise specified, if the beta/OR value from the GWAS 

summary statistics was negative (or the OR <1), the beta/OR measures were converted to 

positive values and the reference allele flipped to represent phenotype-increasing PGS. 

Moreover, we built the PGSs based on the directly genotyped data rather than imputed data. 

This decision was based on the previous research findings which highlighted that the PGSs 

built from the directly genotyped data had more predictive power [22] or did not differ 

significantly from the PGSs that were based on imputed data[1]. All analyses were restricted 

to individuals of European ancestry. These analyses were performed using PRSice [23] and 

PLINK 1.9 [15]. The PGSs that were made publicly available for ELSA users were not adjusted 

for any potential covariates when being constructed.  
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3.2. Sources for SNP weights 

To incorporate externally valid SNP weights from GWASs, we performed a search of the 

literature to identify large GWAS meta-analysis studies related to the selected phenotype. 

Where possible, the meta-analyses that did not include ELSA in the discovery analysis were 

selected to be independent of our data. SNP weights were downloaded from the consortium 

webpages, requested from consortium authors, obtained from dbGap, or taken from published 

supplemental material. If ELSA was included in the analyses, we requested that the consortia 

to repeat the analysis with ELSA removed. All base SNP files from GWAS meta-analyses 

were converted to NCBI (National Center for Biotechnology Information) build 37 annotation 

for compatibility with ELSA SNP data.  
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3.3. RESULTS 

3.3.1. PERSONALITY TYPES 

3.3.1.1. Extraversion 

The GWAS meta-analyses for Extraversion was conducted by the Genetics of Personality 

Consortium (GPC) [24]. The meta-analysis on Extroversion was performed on 63,030 subjects 

from 29 discovery cohorts. Sample sizes of the individual cohorts ranged from 177 to 7210 

subjects. Extraversion scores were regressed on each SNP under an additive model, with sex 

and age included as covariates. Covariates such as ancestry PCs were added if deemed 

necessary for a particular cohort. Meta-analysis of GWA results did not yield genome-wide 

significant SNPs associated with Extraversion. The lowest p-value observed was 2.9x10-7 for 

a SNP located on chromosome 2. There were 74 SNPs with P-values <1x10-5. The GWAS for 

Extraversion contained 6,941,603 SNPs; of these, 1,218,049 SNPs overlapped with the ELSA 

target data and were included in the PGS for Extraversion.  

 

3.3.1.2. Agreeableness, Openness to Experience and Conscientiousness 

The PGSs for Agreeableness, Openness to Experience and Conscientiousness were 

calculated based on the GWAS meta-analysis of Big Five personality traits [25]. TThis GWAS 

combined data from 10 studies, including 17375 individuals of European ancestry. In silico 

replication of the genome-wide significant SNPs was sought in five additional samples 

consisting of 3294 individuals. To compare results at the SNP level, ∼2.5M common SNPs 

were imputed using the HapMap phase II CEU data as the reference sample. GWA analyses 

were conducted in each study independently using linear regression under an additive model 

and including sex and age as covariates. Two SNPs for Openness to Experience on 

chromosome 5q14.3 and one SNP for Conscientiousness on chromosome 18q21.1 passed 

the genome-wide significance level of p<5×10−8 in the discovery stage. No genome-wide 

significant results were found for Agreeableness  

 

3.3.1.3. Neuroticism 

PGS for Neuroticism was calculated based in the GWAS summary statistics that collated 

results from the Genetics of Personality Consortium (GPC) (n=63,661) and results from a new 

analysis of UKB data cohort (n=107,245) [26]. The meta-analysis yielded 11 lead SNPs, 2 of 

which tag inversion polymorphisms. In UKB, the phenotype measure was the respondent’s 

score on a 12-item version of the Eysenck Personality Inventory Neuroticism scale. The GPC 

harmonised different neuroticism batteries. In the UKB, analyses controlled for the first 15 

PCs, indicator variables for genotyping array, sex, indicator variables for age ranges, and sex-

by-age interactions. Model adjustments for the 29 cohorts contributing to the GPC meta-

analysis varied. The GWAS for Neuroticism contained 6,524,432 SNPs; of these, 1,191,041 

SNPs overlapped with the ELSA target data and were included in the PGSs for Neuroticism.  
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Table 2.  The summary statistics for PGSs for Extraversion, Agreeableness, Openness to Experience, Conscientiousness and 

Neuroticism in the ELSA study. 

PGSs Sample Size Minimum Maximum Range Median Mean SE (mean) 

Agreeableness 7183 51706.9 52875.1 1168.2 52216.0 52216.2 1.71 

Openness  7183 80286.5 80731.9 445.4 80527.4 80527.1 0.72 

Conscientiousness 7183 62805.8 63155.0 350.0 62973.7 62974.2 0.56 

Neuroticism 7183 5351.2 5459.7 108.4 5407.3 5407.1 0.20 

Extraversion 7183 9386.5 9534.0 147.5 9462.6 9462.8 0.22 

PGS, polygenic score; SE, standard error 

 

Table 3.  The sources of the GWAS summary statistics used for these personality types  

Phenotype Consortium 
GWAS 

SNPs 

Overlappin

g with 

ELSA 

GWAS meta-analysis citation Source of base data 

Neuroticism SSCAG 6,524,432 1,191,041 Okbay et al. (2016)[26] https://www.thessgac.org/data 

Extraversion GPC 6,941,603 1,218,049 van den Berg et al (2016)[24] http://www.tweelingenregister.org/GPC/ 

Agreeableness GPC 2,305,461 760,918 

de Moor et al. (2012)[25] http://www.tweelingenregister.org/GPC Openness GPC 2,305,738 750,564 

Conscientiousness GPC 2,305,682 750,990 

SSCAG, Social Science Genetic Association Consortium; GPC, Genetics of Personality Consortium 

 

 

http://www.tweelingenregister.org/GPC/
http://www.tweelingenregister.org/GPC
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Figure 2.  The distributions of the PGSs for Extraversion, Agreeableness, Openness to Experience, Conscientiousness and Neuroticism in 

the ELSA study  
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3.3.2. SOCIO-ECONOMIC TRAITS  

3.3.2.1. Educational Attainment  

Educational attainment (EA) is seen as a proxy for educational achievement and to some 

extend learning [22]. There are two main PGSs for EA available and widely used for research 

purposes: 1) is based on the GWAS summary statistics developed by Okbay et al. (2016), and 

2) is based on more recent and much larger GWAS summary statistics provided by Lee et al. 

(2018). To be consistent with the HRS study, in this report these PGSs will be referred to as 

EA-2 and EA-3, respectively. The detailed methodological information on construction of these 

PGSs is provided below. 

 

3.3.2.1.1. Educational Attainment - 2 (EA2)  

PGSs for EA-2 were created using results from a 2016 study excluding 23andMe results (due 

to data use agreements)[22]. The meta-analysis included 293,723 individuals in the discovery 

sample and 111,349 in the replication sample. All samples were restricted to individuals of 

European descent and whose EA was assessed at or above age 30-year-old. Approximately 

9.3 million SNPs were included in the analyses, with the SNPs having been imputed to the 

1000 genomes reference panel (1000G)[27]. There were 74 loci that met the genome-wide 

significance threshold. The educational attainment as measured as years of completed 

education (i.e., EduYears). This phenotype was constructed by mapping each major 

educational qualification that can be identified from the survey measure of the cohort to an 

International Standard Classification of Education (ISCED) category and imputing a years-of-

education equivalent for each ISCED category. Study-specific GWASs controlled for the first 

ten PCs of the genotypic data, a third-order polynomial in age, an indicator for being female, 

interactions between age and female, and study-specific controls, including dummy variables 

for major events such as wars or policy changes that may have affected access to education 

in their specific sample. The distribution of PGS for EA-2 in the ELSA study is depicted in 

Figure 3. The SSGAC GWAS for EA-2 contained 8,146,840 SNPs; of these, 1,316,119 SNPs 

overlapped with the ELSA target data and were included in the PGSs for EA-2.  

 

Figure 3.  Distribution of PGS for EA-2 

The blue dash line depicts the mean
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3.3.2.1.2. Educational Attainment - 3 (EA3) 

Similar to EA-2, PGS for EA-3 was created using results from a GWAS carried out by the 

Social Science Genetic Association Consortium (SSGAC) in 2018 significantly extending the 

data and number of participates involved [28]. Indeed, the SSGAC GWAS 2018 is an 

extension of the Okbay’s et al. (2016) work and was performed on  n=1125816 individuals 

across 70 quality-controlled cohorts with all cohorts utilising SNPs imputed to the 1000 

genomes reference panel (1000G)[27]. The association analyses in the included datasets 

were adjusted for sex, birth year, their interaction and 10 PCs of the genetic relatedness 

matrix. The results showed that a PGS for EA-3 explained around 11% of the variance in 

educational attainment. The distribution of PGS for EA-3 in the ELSA study is depicted in 

Figure 4. The SSGAC GWAS 2018 contained 10,101,242 SNPs; of these, 1,325,851SNPs 

overlapped with the ELSA target data and were included in the PGSs for EA.  

 

Figure 4.  Distribution of PGS for EA-3 

 
 

3.3.2.2. Social Deprivation 

PGS for social deprivation was created using results from a GWAS carried out using data from 

UK Biobank [29]. Social deprivation was measured using the Townsend Social Deprivation 

Index which is a measure of the level of social deprivation in which the participant lives. A total 

of 112,005 individuals had a Townsend score. The 152,729 blood samples submitted to UK 

Biobank were genotyped using either the UKBileve array (n=49,979) or the UK Biobank axiom 

array (n=102,750). Affymetrix performed genotyping on 33 batches of ~4,700 samples and 

also conducted the initial quality control procedure on the genotyping data. In addition to the 

standard quality control procedures applied by the Biobank 

(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155580.), additional quality control was 

performed for this study. This entailed removing individuals who had non-British ancestry 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155580
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(within those who self-identified as being British, principal component analysis was used to 

remove outliers, n=32,484), high missingness (n=0), relatedness (n=7,948), QC failure in UK 

Bileve (n=187), and gender mismatch (n=0). A total of 112,151 individuals remained for further 

analyses. The UK Biobank interim release was imputed to a reference set which combined 

the UK10K haplotype and 1000 Genomes Phase 3 reference panels. Association analysis for 

the social deprivation phenotype was adjusted to control for the effects of age, sex, 

assessment centre, genotyping batch, genotyping array, and population stratification (using 

10 PCs). The PGS for social deprivation contains 1,341,112 SNPs that overlapped between 

the ELSA genetic database and the GWAS meta-analysis  

 

Figure 5.  Distribution of PGS for Social Deprivation 
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Table 4.  The summary statistics for PGSs for each socio-economic trait 

PGSs Sample  Minimum Maximum Range Median Mean SE (mean) 

Educational Attainment-2 7183 5104.3 5198.5 94.2 5150.2 5150.1 0.15 

Educational Attainment-3 7183 4197.0 4296.7 99.7 4248.7 4248.5 0.14 

Social Deprivation 7183 7804.2 7934.5 130.3 7867.5 7867.2 0.21 

PGS, polygenic score SE, standard error 

 

 

 

Table 5.  Sources of the GWAS summary statistics used for these socio-economic traits  

Phenotype Consortium GWAS SNPs 
Overlapping 

with ELSA 

GWAS meta-

analysis citation 
Source of base data 

Educational Attainment-2 SSCAG 8,146,840 1,316,119 Okbay et al. (2016)[22] https://www.thessgac.org/data 

Educational 

Attainment-3 
SSCAG 10,101,242 1,325,851 Lee et al. (2018)[28] On request from the authors 

Social Deprivation - 15,732,391 1,341,112 Hill et al (2016) [29] https://grasp.nhlbi.nih.gov/FullResults.aspx 

SSCAG, Social Science Genetic Association Consortium 
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3.3.3. ADULT MENTAL HEALTH AND WELLBEING 

3.3.3.1. Alzheimer’s disease (2013) 

The PGS for Alzheimer’s disease (AD) were created using results from a 2013 GWAS 

conducted by the International Genomics of Alzheimer’s Project (IGAP)[30]. The GWAS meta-

analysis of AD was conducted across 20 independent studies using data from four 

international consortia. These included Alzheimer’s Disease Genetic Consortium (ADGC), the 

Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium, the 

European Alzheimer’s Disease Initiative (EADI), and the Genetic and Environmental Risk in 

Alzheimer’s Disease (GERAD) Consortium. The stage 1 this meta-analysis included 54,162 

participants (ncases=17,008 and ncontrols=37,154) of European decent with a total of 7,055,881 

SNPs imputed to 1000 Genomes (2010 release). The stage 2 replication sample included 

19,884 participants of European ancestry (ncases=8,572 and ncontrols=11,312) with a total of 

11,632 genotyped SNPs. In addition to the APOE locus (encoding apolipoprotein E), the two-

stage combined discovery and replication GWAS revealed 19 SNPs that reached GWAS 

significant associations with AD. Adjustment covariates within each contributing cohort 

included age, sex, and genetic PCs. The distribution of PGS for AD in ELSA is depicted in 

Figure 6. The PGS for AD contains 1,191,420 SNPs that overlapped between the ELSA 

genetic database and the GWAS meta-analysis.  

 

Figure 6.  Distribution of PGS for Alzheimer’s disease 
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3.3.3.2. Alzheimer’s disease (2019) 

The PGS for Alzheimer’s disease (AD) (2019) were created using results from a large 

genome-wide association study of clinically diagnosed AD and AD-by-proxy (71,880 cases, 

383,378 controls)[31]. Participants in this study were obtained from multiple sources, including 

raw data from case-control samples collected by PGC-ALZ and ADSP (made publicly 

available through dbGaP), summary data from the case-control samples in the IGAP, and raw 

data from the population-based UKB sample which was used to create a weighted AD-by-

proxy phenotype. An additional independent case-control sample (deCODE) was used for 

replication. AD-by-proxy, based on parental diagnoses, showed strong genetic correlation with 

AD (rg = 0.81). Cumulatively, the meta-analysis identified 29 risk loci, implicating 215 potential 

causative genes. Adjustment covariates within each contributing cohort included age, sex, and 

genetic PCs. The distribution of PGS for AD (2019) in ELSA is depicted in Figure 6. The PGS 

for AD contains 1712973 SNPs that overlapped between the ELSA genetic database and the 

GWAS meta-analysis.  

 

Figure 7.  Distribution of PGS for Alzheimer’s disease (2019) 
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3.3.3.3. Depressive Symptoms 

PGS for depressive symptoms was created using results from a 2016 GWAS conducted by 

the Social Science Genetic Association Consortium (SSGAC) as part of their subjective 

wellbeing GWAS [26]. The SSGAC GWAS included 180,866 individuals and meta-analysed 

publicly available results from a study performed by the Psychiatric Genomics Consortium 

(PGC)[32] (ncases=9,240, ncontrols= 9,519) with results from analyses of UK Biobank (UKB) 

data[33] (n=105,739), and the Resource for Genetic Epidemiology Research on Aging (GERA) 

Cohort (ncases=7,231, ncontrols=49,316). A replication analysis was also performed using data 

from 23andMe (n=368,890). To define the phenotype, in UKB, a continuous phenotype 

measure was used that combined responses to two questions, which asked about the 

frequency in the past two weeks with which the respondent experienced feelings of 

unenthusiasm or disinterest and depression or hopelessness. The PGC and GERA cohorts 

utilised case-control data on major depressive disorder. In the UKB, analyses controlled for 

the first 15 PCs, indicator variables for genotyping array, sex, indicator variables for age 

ranges, and sex-by-age interactions [33]. In GERA, analyses controlled for the first four PCs 

of the genotypic data, sex, and 14 indicator variables for age ranges.  The PGC included 

controls for five PCs, sex, age, and cohort fixed effects [32]. The distribution of PGS for 

Depressive Symptoms in ELSA is depicted in Figure 8. GWAS summary statistics contained 

6524474 SNPs; of these, 1187563 SNPs overlapped with the ELSA genetic database and 

were included in the PGS for depressive symptoms phenotype.  

 

Figure 8.  Distribution of PGS for Depressive Symptoms  
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3.3.3.4. Major Depressive Disorder (2018)  

The PGSs for Major Depressive Disorder (MDD) were created using results from a 2018 

GWAS conducted by the MDD working group of the Psychiatric GWAS Consortium (PGC)[34]. 

At the time we were preparing the PGS for MDD, the GWAS meta-analysis files are available 

on the PGC website: http://www.med.unc.edu/pgc/results-and-downloads. PGC conducted a 

genome-wide association meta-analysis based in 135,458 cases and 344,901 controls which 

identified 44 independent and significant loci. MDD cases were required to have a DSM-IV 

lifetime MDD diagnosis that was collected by a clinician using structured interviews or clinician-

administered DSM-IV checklists. Most controls were randomly selected and screened for 

lifetime MDD. The distribution of PGS for MDD in ELSA is depicted in Figure 9. GWAS 

summary statistics contained 8,483,301 SNPs; of these, 1197733 SNPs overlapped with the 

ELSA genetic database and were included in the PGS for MDD.  

 

Figure 9.  Distribution of PGS for MDD 2018  
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3.3.3.5. Anxiety (case-control, factor score)  

Anxiety Disorders (AD) included generalized AD, panic disorder and phobias. The PGs for the 

GAD was calculated using the GWAS meta-analysis which combined results across the nine 

studies participating in the Anxiety NeuroGenetics STudy (ANGST) Consortium for over 18000 

unrelated individuals[35]. The combined case-control meta-analysis included n=17,310 and 

the continuous factor score GWAS included n=18,186. All cohorts imputed SNPs to the 1000 

Genomes Project references data (release v3, March 2012) and approximately 6.5 million 

SNPs were included in the combined meta-analysis. The regression analyses were adjusted 

for sex and age at interview, as they were significant predictors of the phenotypes. Ancestry 

principal components were estimated for each sample and included on a sample-by-sample 

basis depending on their correlation with the phenotypes. The authors conducted two types of 

analyses in each sample based on complementary approaches to modelling the comorbidity 

and common genetic risk across the ADs: (1) CC comparisons, in which cases were 

designated as having ‘any AD’ versus supernormal controls, and (2) quantitative FS estimated 

for every subject in the sample using confirmatory factor analysis. The distribution of PGS for 

Anxiety (case-control, factor score) in ELSA is depicted in Figure 10. From the ANGST meta-

analysis, 1,137,311 SNPs overlapped with the ELSA genetic database and were included in 

the PGS for Anxiety (factor score) phenotype and 1,068,194 SNPs overlapped with the ELSA 

genetic database and were included in the PGS for Anxiety (case-control) phenotype.  

 

Figure 10.  Distribution of PGS for Anxiety (case-control, factor score) 
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3.3.3.6. Schizophrenia (2014) 

The PGSs for schizophrenia (2014) were created using results from a 2014 GWAS conducted 

by the Schizophrenia Working Group of the Psychiatric Genomics Consortium (PGC)[36]. The 

schizophrenia GWAS combined meta-analysis included 36,989 cases and 113,075 controls 

(N=152,805) and identified 128 independent associations spanning 108 conservatively 

defined loci that meet genome-wide significance, 83 of which have not been previously 

reported. The replication sample consisted of 1,513 cases and 66,236 controls. After quality 

control, around 9.5 million SNPs were included in the analyses. Genetic principal components 

and study identifiers were included as covariates. The distribution of PGS for Schizophrenia 

in ELSA is depicted in Figure 11. The PGS contain 1,278,742 SNPs that overlapped between 

the ELSA genetic database and the GWAS meta-analysis; these SNPs were included in the 

PGS for Schizophrenia (2014).  

 

Figure 11.  Distribution of PGS for Schizophrenia (2014)  

 

 

3.3.3.7. Schizophrenia (2020) 

The PGSs for schizophrenia (2020) were created using results from a 2020 GWAS conducted 

by the Schizophrenia Working Group of the Psychiatric Genomics Consortium (PGC). The 

schizophrenia GWAS combined meta-analysis included 69,369 people with schizophrenia and 

236,642 controls and identified 270 independent associations spanning 130 genes. The PGS 

contain 1,862,381 SNPs that overlapped between the ELSA genetic database and the GWAS 

meta-analysis; these SNPs were included in the PGS for Schizophrenia (2020).  

 

3.3.3.8. Bipolar disorders (2019)  

GWAS sample comprises 32 cohorts from 14 countries in Europe, North America and 

Australia, totalling 20,352 cases and 31,358 controls of European descent[37]. Cases were 

required to meet international consensus criteria (DSM-IV or ICD-10) for a lifetime diagnosis 

of BD established using structured diagnostic instruments from assessments by trained 

interviewers, clinician-administered checklists, or medical record review. In most cohorts, 
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controls were screened for the absence of lifetime psychiatric disorders and randomly selected 

from the population. Variant dosages were imputed using the 1000 Genomes reference panel, 

retaining association results for 9,372,253 autosomal variants with imputation quality score 

INFO > 0.3 and minor allele frequency (MAF) ≥1% in both cases and controls. Logistic 

regression of case status on imputed variant dosage was performed using genetic ancestry 

covariates. The resulting genomic inflation factor (λGC) was 1.23, 1.01 when scaled to 1,000 

cases and 1,000 controls (λ1000). The linkage disequilibrium (LD) score regression intercept 

was 1.021 (s.e.m. = 0.010), and the attenuation ratio of 0.053 (s.e.m. = 0.027) was non-

significant, indicating that the observed genomic inflation is indicative of polygenicity rather 

than stratification or cryptic population structure. The LD score regression SNP heritability 

estimates for BD were 0.17–0.23 on the liability scale assuming population prevalence of 0.5–

2%. 

 

3.3.3.9. Bipolar disorders (2021)  

The GWAS meta-analysis sample comprised 57 cohorts collected in Europe, North America 

and Australia, totalling 41917 BD cases and 371549 controls of European descent[38]. The 

total effective n, equivalent to an equal number of cases and controls in each cohort 

(4 × ncases × ncontrols/(ncases + ncontrols)), is 101962. Cases were required to meet international 

consensus criteria (DSM-IV, ICD-9, or ICD-10) for a lifetime diagnosis of BD, established using 

structured diagnostic instruments from assessments by trained interviewers, clinician-

administered checklists, or medical record review. In most cohorts, controls were screened for 

the absence of lifetime psychiatric disorders and randomly selected from the population. he 

GWAS meta-analysis identified 64 independent loci associated with BD at genome-wide 

significance (P < 5 × 10−8). Using linkage disequilibrium score regression (LDSC), the ℎ2
SNP of 

BD was estimated to be 18.6% (s.e. = 0.008, P = 5.1 × 10−132) on the liability scale, assuming 

a BD population prevalence of 2%, and 15.6% (s.e. = 0.006, P = 5.0 × 10−132) assuming a 

population prevalence of 1%. The genomic inflation factor (λGC) was 1.38 and the LDSC 

intercept was 1.04 (s.e. = 0.01, P = 2.5 × 10−4). While the intercept has frequently been used 

as an indicator of confounding from population stratification, it can rise above 1 with increased 

sample size and heritability. The attenuation ratio - (LDSC intercept − 1)/(mean of association 

chi-square statistics − 1) - which is not subject to these limitations, was 0.06 (s.e. = 0.02), 

indicating that the majority of inflation of the GWAS test statistics was due to polygenicity. Of 

the 64 genome-wide significant loci, 33 are novel discoveries (that is, loci not overlapping with 

any locus previously reported as genome-wide significant for BD). Novel loci include the major 

histocompatibility complex (MHC) and loci previously reaching genome-wide significance for 

other psychiatric disorders, including 10 for schizophrenia, 4 for major depression and three 

for childhood-onset psychiatric disorders or problematic alcohol use.  

 

3.3.3.10. Subjective Well-Being  

PGSs for subjective wellbeing (SWB) were created using results from a 2016 GWAS 

conducted by the Social Science Genetic Association Consortium (SSGAC)[26]. The 

subjective wellbeing analyses included 298420 European ancestry individuals in the discovery 

sample. Genome-wide significant SNPs were identified in 3 loci. The phenotype measure was 

life satisfaction, positive affect, or in some cohorts a measure combining both. Approximately 

9.3 million SNPs were included in the analyses, with cohorts utilising SNPs imputed to the 

1000 genomes reference panel (1000G) or the HapMap 2 Panel. Adjustments for age, age2, 
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sex, and four PCs from the genotypic data were included in study specific GWAS association 

analyses. Cohorts were also asked to include any study-specific covariates such as study site 

or batch effects. The distribution of PGS for SWB in ELSA is depicted in Figure 12. GWAS 

summary statistics contained 2268674 SNPs; of these, 748500 SNPs overlapped with the 

ELSA genetic database and were included in the PGS for SWB phenotype.  

 

Figure 12.  Distribution of PGS for Subjective Well-Being  

 

 

3.3.3.11. Attention deficit hyperactivity disorder (2019) 

PGSs for ADHD were calculated using a genome-wide association meta-analysis of 20,183 

ADHD cases and 35,191 controls were collected from 12 cohorts that identifies variants 

surpassing genome-wide significance in 12 independent loci[39]. These samples included a 

population-based cohort of 14,584 cases and 22,492 controls from Denmark collected by the 

Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) and 11 

European, North American, and Chinese cohorts aggregated by the Psychiatric Genomics 

Consortium (PGC). ADHD cases in iPSYCH were identified from the national Psychiatric 

Central Research Register psychiatric and diagnosed by psychiatrists at a psychiatric hospital 

according to ICD10 (F90.0) and genotyped using Illumina PsychChip. In total, 304 genetic 

variants in 12 loci surpassed the threshold for genome-wide significance. GWAS summary 

statistics contained 8094094 SNPs; of these, 1099981 SNPs overlapped with the ELSA 

genetic database and were included in the PGS for ADHD phenotype.  
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Figure 13.  Distribution of PGS for ADHD (2019) 

 

 

3.3.3.12. Autism spectrum disorder (2016) 

PGSs for Autism spectrum disorder (ASD) were calculated using meta-analyses that 

combined data from 14 independent cohorts contributed by eight academic studies; each 

contributing site confirmed all affected individuals had an ASD diagnosis. Where data 

permitted, individuals assessed at under 36 months of age or if there was any evidence of 

diagnostic criteria not being met from either the Autism Diagnostic Interview-Revised (ADI-R) 

or the Autism Diagnostic Observation Schedule (ADOS), were excluded. The primary meta-

analysis (Worldwide ancestry (WW)) was based on data from 7387 ASD cases and 8567 

controls. An independent replication of the results using summary GWAS findings from two 

additional sources (i.e., the Danish iPSYCH Project (7783 ASD cases and 11359 controls) 

and a combined deCODE Collection (from Iceland plus a collection of individuals from Ukraine, 

Georgia and Serbia) and the ‘Study to Explore Early Development’ (SEED) (1369 ASD cases 

and 137308 controls)) was carried out. GWAS summary statistics contained 6440258 SNPs; 

of these, 1094347 SNPs overlapped with the ELSA genetic database and were included in 

the PGS for ASD phenotype.  

 

3.3.3.13. Loneliness (2016) 

PGCs for loneliness were created using results from a 2016 GWAS conducted by the 

Psychiatric Genomics Consortium utilising genotypic and phenotypic data from 10 760 

individuals aged ⩾50 years that were collected by the Health and Retirement Study (HRS) to 

perform the first genome-wide association study of loneliness[40]. No associations reached 

genome-wide significance (PGWAS >5×10-8). Furthermore, none of the previously published 

associations between variants within candidate genes (BDNF, OXTR, RORA, GRM8, 

CHRNA4, IL-1A, CRHR1, MTHFR, DRD2, APOE) and loneliness were replicated 
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(PGWAS>0.05), despite our much larger sample size. Cohorts were also asked to include any 

study-specific covariates such as study site or batch effects. GWAS summary statistics 

contained 5768558 SNPs; of these, 1055906 SNPs overlapped with the ELSA genetic 

database and were included in the PGS for Loneliness (2016) phenotype.  

 

3.3.3.14. Loneliness (2018) 

PGSs for Loneliness (2018) were calculated using summary which were based on data from 

the May 2017 release of imputed genetic data from UK Biobank[41] which included 40 M 

imputed variants from the HRC reference panel. Individuals clustered into this group who self-

identified by questionnaire as being of an ancestry other than white European were excluded. 

After application of QC criteria, a maximum of 452,302 individuals were available for analysis 

with genotype and phenotype data. Loneliness was derived from self-reported answers to 

questions directed via assessment centre touchscreen. The data from three related questions 

was assessed loneliness and social isolation–(1) 'Do you often feel lonely?', to which 

individuals answered 'yes' (recorded as cases) or 'no' (controls), (2) A composite variable 

based on the questions 'Including yourself, how many people are living together in your 

household?' and ''How often do you visit friends or family or have them visit you?' (cases were 

defined as those who lived alone and who indicated that they either never visited or had no 

friends or family outside their household; controls were defined as those who either did not 

live alone, or had friends who visited at least once a week) and (3) A variable representing 

quality of social interactions 'How often are you able to confide in someone close to you?' 

(cases were defined as those who answered 'Never or almost never', controls were defined 

as those who answered 'Almost daily'). GWAS summary statistics contained 7,745,443 SNPs; 

of these, 1342866 SNPs overlapped with the ELSA genetic database and were included in 

the PGS for Loneliness (2018) phenotype.  
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Table 6.  Presents the summary statistics for PGS for each adult mental health and wellbeing outcome  

 

PGS  Sample Size Minimum Maximum Range Median Mean SE (mean) 

Alzheimer’s disease (2013) 7183 25696 26112.5 416.5 25896 25896.2 0.64 

Alzheimer’s disease (2019) 7183 5567.5 5624.1 56.6 5597.3 5597.3 0.08 

Anxiety (case-control) 7183 -1010.4 -306.6 703.9 -661.2 -662.0 1.23 

Anxiety (factor score) 7183 7332.1 7556.0 223.9 7451.6 7449.6 0.30 

Attention deficit hyperactivity disorder (2019) 7183 -1064.0 -670.7 393.3 -875.2 -875.7 0.66 

Autism spectrum disorder (2016) 7183 30140.6 30808.6 668.0 30429.3 30427.9 1.02 

Bipolar disorders (2019) 7183 -1611.5 -1153.6 457.8 -1377.0 -1377.1 0.69 

Bipolar disorders (2021) 7183 96558.4 98588.1 2029.7 97642.6 97634.8 3.20 

Depressive Symptoms (DS) 7183 5170.3 5283.8 113.5 5225.0 5224.7 0.16 

Loneliness (2016) 7183 34514.4 35006.3 491.9 34736.9 34737.4 0.81 

Loneliness (2018) 7183 1579.1 1607.3 28.3 1594.6 1594.5 0.05 

Major Depressive Disorder (2018) 7183 -283.8 -116.9 166.9 -201.8 -202.2 0.26 

Schizophrenia (2014)  7183 20976.9 21498.2 521.3 21295.7 21293.7 0.77 

Schizophrenia (2020) 7183 -3248.9 -2628.6 620.3 -2811.5 -2829.7 1.06 

Subjective Well-Being 7183 2763.7 2828.7 6465.0 2791.8 2791.8 0.10 

PGS, polygenic score; SE, standard error 

 



32 

Table 7.  Sources of the GWAS summary statistics used for PGS for each adult mental health and wellbeing outcome  

 

Phenotype Consortium 
GWAS 

SNPs 

Overlapping 

with ELSA 

GWAS meta-analysis 

citation 
Source of base data 

ADHD PGC 8,094,094 1,099,981 
Brainstorm Consortium et al 

(2019)[39] 
https://www.med.unc.edu/pgc/results-and-downloads 

Alzheimer’s disease (2013) IGAP 7,055,881 1,191,420 Lambert et al. (2013)[30] 
http://web.pasteur-

lille.fr/en/recherche/u744/igap/igap_download.php 

Alzheimer’s disease (2019) -  1,712,973 Jansen et al (2019)[31] https://ctg.cncr.nl/software/summary_statistics 

Anxiety Disorders (case-control) ANGST  1,068,194 Otowa et al. (2016)[35] https://www.med.unc.edu/pgc/results-and-downloads 

Anxiety Disorders (factor score) ANGST 6,306,612 1,137,311 Otowa et al. (2016)[35] https://www.med.unc.edu/pgc/results-and-downloads 

Autism Spectrum Disorders PGC 6,440,258 1,094,347 
Psychiatric Genomics 

Consortium (2017)[42] 
https://www.med.unc.edu/pgc/results-and-downloads 

Bipolar disorders (2019) PGC 12,369,815 1,228,480 Stahl et al. (2019)[37] https://www.med.unc.edu/pgc/results-and-downloads 

Bipolar disorders (2021) PGC 7,608,183 5,901,703 Mullins et al. (2021)[38] https://www.med.unc.edu/pgc/results-and-downloads 

Depressive symptoms SSCAG 6,524,474 1,187,563 Okbay e al. (2016)[26] https://www.thessgac.org/data 

Insomnia Complaints - 12,444,915 803,361 
Hammerschlag et al 

(2017)[43] 
http://ctg.cncr.nl/software/summary_statistics 

Loneliness (2017) PGC 5,768,558 1,055,906 Gao et al (2017)[40] https://www.med.unc.edu/pgc/results-and-downloads 

Loneliness (2018) PGC 7,745,443 1,342,866 Day et al (2018)[41] https://www.med.unc.edu/pgc/results-and-downloads 

Major Depressive Disorder (2018)  PGC 8,483,301 1,197,733 Wray et al (2018)[34] https://www.med.unc.edu/pgc/results-and-downloads 

Schizophrenia (2014)  PGC 9,444,230 1,278,742 Ripke et al. (2014)[36] 
https://www.med.unc.edu/pgc/results-and-downloads 

(scz2.snp.results.txt.gz) 

Schizophrenia (2020)  PGC 7,564,369 1,862,381 
Psychiatric Genomics 

Consortium et al (2020) 
https://www.med.unc.edu/pgc/results-and-downloads 

Subjective Well-Being  SSCAG 2,268,674 748,500 Okbay et al (2016)[26] On request from the authors 

PGC, Psychiatric Genomics Consortium; IGAP, International Genomics of Alzheimer’s Project; ANGST, Anxiety NeuroGenetics STudyConsortium; SSCAG, Social Science 

Genetic Association Consortium;  

 

 

 

http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php
http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php
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3.3.4. CHILDHOOD EXPERIENCES  

3.3.4.1. Aggressive behaviour in childhood (2015) 

PGCs for Aggressive behaviour in childhood was calculated using the summary statistics from 

GWAS performed in the framework of the Early Genetics and Life course Epidemiology 

(EAGLE) consortium (http://research.lunenfeld.ca/eagle/)[44]. Nine cohorts contributed data 

for the total meta‐analysis (N = 18,988 children, mean age = 8.44 years, SD = 4.16). In all 

cohorts that were included in this meta-analysis, well‐validated questionnaires assessing 

aggressive behaviour in children were mailed to parents of children. In eight out of the nine 

cohorts, maternal ratings of children’s aggressive behaviour were obtained. In GINI + LISA, 

the majority (>80%) of the questionnaires were filled in by the mother. Aggressive behaviour 

was measured on a continuous scale (with higher scores indicating more aggressive 

behaviour). The distribution of PGS for Aggressive behaviour in childhood in ELSA is depicted 

in Figure 14. GWAS summary statistics contained 2,188,528 SNPs; of these, 722,659 SNPs 

overlapped with the ELSA genetic database and were included in the PGS for Aggressive 

behaviour in childhood phenotype.  

 

Figure 14.  Distribution of PGS for Aggressive behaviour in childhood (2015) 

 

http://research/
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3.3.4.2. Pre-school internalising (2014) 

PGSs for internalizing problems was calculated using the summary statistics from GWAS that 

collated data from 3 cohorts (total N=4,596 children) in which Preschool internalizing problems 

was assessed with the same instrument, the Child Behavior Checklist[45]. The results showed 

that Genome-wide SNPs explained 13% to 43% of the total variance in preschool internalizing 

problems. The meta-analysis did not yield a genome-wide significant signal but was 

suggestive for the PCSK2 gene located on chromosome 20p12.1. The distribution of PGS for 

Preschool internalizing problems in ELSA is depicted in Figure 15. GWAS summary statistics 

contained 2,268,674 SNPs; of these, 798,070 SNPs overlapped with the ELSA genetic 

database and were included in the PGS for Preschool internalizing problems phenotype.  

 

Figure 15.  Distribution of PGS for Pre-school internalising (2014) 

 
 

3.3.4.3. Childhood trauma 

PGSs for Childhood trauma were calculated using summary statistics from a meta-analysis 

that combined 19 GWASs comprising subjects of European ancestry only. The discovery 

dataset consisted of 124,711 individuals with available childhood maltreatment data from the 

UK Biobank (UKBB) and the replication sample comprised 26,290 individuals - a subset of the 

PGC-PTSD Freeze 1.5 dataset (PGC1.5). For the childhood maltreatment phenotype, 

Childhood Trauma Questionnaire (CTQ) scores on physical, sexual, and emotional abuse 

were obtained from the participating studies. From this, an overall childhood maltreatment 

count score of 0–3 was constructed, based on a count of the three abuse categories listed 

above. An individual was considered to have endorsed a childhood abuse category if they 

scored in the moderate to extreme range for that particular category, per established cut-offs. 

If CTQ data were not available, the event assessment during childhood (occurring before 18 

years of age) that was most validated for that particular study was obtained, providing a count 
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of the total number of different categories of reported childhood events (e.g. physical, sexual, 

or severe emotional abuse) along with the range of possible scores for the measure. The 

distribution of PGS for Childhood trauma in ELSA is depicted in Figure 16. A total of 1143861 

SNPs overlapped with the ELSA genetic database with the GWAS summary statistics and 

were included in the PGS for Childhood trauma phenotype.  

 

Figure 16.  Distribution of PGSs for childhood trauma 
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Table 8.  The summary statistics for PGS for childhood experiences  

PGS Sample Size Minimum Maximum Range Median Mean SE (mean) 

Childhood trauma 7183 948116 970771 22655 959548.0 959501.8 36.3 

Pre-school internalising (2014) 6991 24636.3 25153.6 1236.4 24887.0 24866.9 1.66 

Aggressive behaviour in childhood (2015) 7183 563819 581439 17620 572363.0 572363.0 23.0 

PGS, polygenic score; SE, standard error 

 

 

Table 9.  Sources of the GWAS summary statistics used for PGS childhood experiences  

Phenotype Consortium 
GWAS 
SNPs 

Overlapping 
with ELSA 

GWAS meta-analysis citation Source of base data 

 Aggressive behaviour in 
childhood  

EAGLE 2,188,528 722,659 Pappa et al (2015)[44]  https://www.wikigenes.org/e/art/e/348.html 

 Preschool Internalizing 
Problems 

EAGLE 2,821,734 798,070 Benke et al (2014)[45] https://www.wikigenes.org/e/art/e/348.html 

 
Childhood trauma PGC 8,031,871 1,143,861 Dalvie et al (2020)[46] 

https://www.med.unc.edu/pgc/results-and-
downloads 

 

 

https://www.wikigenes.org/e/art/e/348.html
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3.3.5. PHYSICAL HEALTH OUTCOMES 

3.3.5.1. Coronary Artery Disease (2011) 

PGS for coronary artery disease (CAD) was created using results from a 2011 study 

conducted by the Coronary ARtery DIsease Genome wide Replication and Meta-analysis 

(CARDIoGRAM) consortium[47]. The GWAS meta-analysis consisted of 14 studies with a total 

of 22,233 individuals with CAD (cases) and 64,762 without CAD (controls) of European 

descent imputed to the HapMap3 CEU panel. Replication was performed in a sample of 

56,682 individuals (approximately half cases and half controls). This analysis identified 13 loci 

newly associated with CAD at PGWAS < 5 × 10−8 which had risk allele frequencies ranging from 

0.13 to 0.91 and were associated with a 6% to 17% increase in the risk of CAD per allele. The 

results of these analyses also confirmed the association of 10 of 12 previously reported CAD 

loci. Study-specific GWAS adjusted for age of onset (cases) or age of recruitment (controls), 

gender, and genetic PCs. The distribution of PGS for CAD in ELSA is depicted in Figure 17. 

The PGS contain 783,413 SNPs that overlapped between the ELSA genetic database and the 

GWAS meta-analysis; these SNPs were included in the PGS for CAD.  

 

Figure 17.  Distribution of PGS for Coronary Artery Disease (2011) 
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3.3.5.2. Coronary Artery Disease (2018) 

PGSs for Coronary Artery Disease (CAD) were calculated using the summary statistics from 

the largest genome-wide association study of CAD among individuals with diabetes to 

date[48]. Here, the primary data set contained 15,666 individuals with diabetes of white British 

ancestry (3,968 CAD cases and 11,698 controls). The outcome of interest was CAD based on 

UK Biobank’s baseline assessment verbal health interview, combined with linked data from 

hospital admissions and death registries. In total, 9,087,334 autosomal variants with a quality 

score (IMPUTE2 information metric) >0.8 and a minor allele count ≥30 in cases and controls 

were analysed in a series of logistic regression models adjusting for age, sex, the first 20 

principal components and genotyping batch (3 levels; the UK BiLEVE, UK Biobank release 1 

and 2). The association tests were performed in PLINK v2.00 (www.cog-genomics.org/ 

plink/2.0/)) using dosages (additive coding). Overall, this study provided evidence that the 

genetic mechanisms underlying CAD in participants with diabetes are similar to those in 

individuals without diabetes. The distribution of PGS for CAD (2018) in ELSA is depicted in 

Figure 18. The PGS contain 1,349,976 SNPs that overlapped between the ELSA genetic 

database and the GWAS meta-analysis; these SNPs were included in the PGS for CAD 

(2018). 

 

Figure 18.  Distribution of PGS for Coronary Artery Disease (2018) 
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3.3.5.3. Type II Diabetes (2012) 

PGSs for Type II Diabetes (T2D) were created using GWAS meta-analysis results from a 2012 

study conducted by the DIAbetes Genetics Replication and Meta-analysis (DIAGRAM) 

Consortium[49]. The stage one (discovery) meta-analysis consists of 12,171 T2D cases and 

56,862 controls across 12 GWAS from European descent populations. The stage two 

(replication) meta-analysis consisted of 22669 cases and 58119 controls, including 1178 

cases and 2472 controls of Pakistani descent. The combined meta-analysis identified 10 

genome-wide significant loci. HapMap-2 CEU was used as the imputation panel resulting in a 

common set of ~2.5 million SNPs across studies. Study-specific GWAS adjusted for age of 

onset (cases) or age of recruitment (controls), gender, and genetic PCs. The distribution of 

PGS for T2D in ELSA is depicted in Figure 19. The PGS contain 761,488 SNPs that 

overlapped between the ELSA genetic database and the DIAGRAM GWAS summary 

statistics; these SNPs were included in PGS for T2D.  

 

Figure 19.  Distribution of PGS for Type II Diabetes 

 

 

3.3.5.4. Type II Diabetes (2018) 

PGSs for Type II Diabetes (T2D, 2018) were created using GWAS meta-analysis that 

combined the DIAGRAMv3 (stage 1) GWAS meta-analysis with a stage 2 meta-analysis 

comprising 22669 cases and 58,190 controls genotyped with Metabochip, including 1,178 

cases and 2472 controls of Pakistani descent (Pakistan Risk Of Myocardial Infarction Study 

(PROMIS))[50]. Combining stage 1 and stage 2 meta-analyses included 34840 cases and 

114,981 controls overwhelmingly of European descent leading to identification to eight new 

T2D susceptibility loci at genome-wide significance (P < 5 × 10−8).  
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3.3.5.5. Rheumatoid Arthritis 

The PGSs for Rheumatoid Arthritis (RA) were created using results from a 2014 GWAS that 

was performed in a total of >100,000 subjects of European and Asian ancestries (29,880 RA 

cases and 73,758 controls), by evaluating 10 million SNPs. From these analyses, 42 novel 

RA risk loci at a genome-wide level of significance were discovered, bringing the total to 101 

[51]. After applying quality control criteria, whole-genome genotype imputation was performed 

using 1000 Genomes Project Phase I (α) European (n=381) and Asian (n=286) data as 

references. Associations of SNPs with RA were evaluated by logistic regression models 

assuming additive effects of the allele dosages including top 5 or 10 principal components as 

covariates (if available) using mach2dat v.1.0.16. To calculate the PGS for RA, the negative 

ORs value from the GWAS summary statistics (the OR <1), the OR measures were not 

converted to positive values and the reference allele were flipped to represent phenotype-

increasing PGS. The distribution of PGS for RA in ELSA is depicted in Figure 20. A total of 

8,747,962 SNPs were included in the meta-analysis summary statistics for RA. Of these, 

1,100,616 SNPs overlapped with the ELSA genetic database and were included in the PGS 

for the Rheumatoid arthritis phenotype.  

 

Figure 20.  Distribution of PGS for Rheumatoid Arthritis  
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3.3.5.6. Myocardial Infarction 

The PGSs for myocardial infarction (MI) were created using 2015 results from a subgroup 

analysis of coronary artery disease (CAD) conducted by the Coronary ARtery DIsease 

Genome wide Replication and Meta-analysis (CARDIoGRAM) consortium[52]. The GWAS is 

a meta-analysis of 48 studies of mainly European, South Asian, and East Asian, descent 

imputed using the 1000 Genomes phase 1 v3 training set with 38 million variants. The study 

interrogated 9.4 million variants and involved 60,801 CAD cases and 123,504 controls. Case 

status was defined by an inclusive CAD diagnosis (for example, myocardial infarction, acute 

coronary syndrome, chronic stable angina or coronary stenosis of >50%). 37 previous loci and 

10 new loci achieved genome-wide significance in these analyses. MI subgroup analysis was 

performed in cases with a reported history of MI (~70% of the total number of cases). No 

additional loci reached genome-wide significance in the MI analysis. The distribution of PGS 

for MI in ELSA is depicted in Figure 21. The European ancestry PGSs contain 1,299,282 

SNPs that overlapped between the ELSA genetic database and the GWAS meta-analysis; 

these SNPs were included in the PGS.  

 

Figure 21. Distribution of PGS for Myocardial Infarction in ELSA  
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3.3.5.7. Migraine (2016) 

PGSs for migraine were calculated using data from a meta-analysis of 22 GWA studies, 

including data for a total of 59,674 affected subjects and 316,078 controls collected from six 

tertiary headache clinics and 27 population-based cohorts throughout worldwide collaboration 

with the International Headache Genetics Consortium (IHGC)[53]. This combined data set 

contained more than 35,000 new migraine cases not included in previously published GWA 

studies. These case samples came from both individuals diagnosed by a doctor and 

individuals with self-reported migraine as stated on questionnaires. The final combined sample 

consisted of 59,674 case samples and 316,078 controls in 22 non-overlapping case–control 

data sets. All subjects were of European ancestry (EUR). Missing genotypes were imputed 

into each sample using a common 1000 Genomes Project reference panel. Association 

analyses were carried out within each study using logistic regression on the imputed marker 

dosages, with adjustments made for sex and other covariates where necessary. The 

association results were combined in an inverse-variance weighted fixed-effects meta-

analysis. Markers were filtered for imputation quality and other metrics, leaving 8,094,889 

variants for consideration in our primary analysis. It is important to note that only the genetic 

markers that reached suggestive PGWAS<5x10-6 were made available for the public download. 

Therefore, PGSs for Migraine in ELSA were calculated based on 7208 markers, of which 1188 

overlapped with the ELSA data. The distribution of PGS for migraine is depicted in Figure 22. 

 

Figure 22.  Distribution of PGS for Migraine (2016) 

 



43 

3.3.5.8. Chronic pain  

PGSs for chronic pain were calculated using the summary statistics from a large-scale GWAS 

of Multisite Chronic Pain (MCP) in 387,649 UK Biobank participants[54]. To define MCP 

phenotype, UK Biobank participants were asked via a touchscreen questionnaire about “pain 

types experienced in the last month”, with possible answers: ‘None of the above’; ‘Prefer not 

to answer’; pain at seven different body sites (head, face, neck/shoulder, back, 

stomach/abdomen, hip, knee); or ‘all over the body’. Where patients reported recent pain at 

one or more body sites, or all over the body, they were additionally asked whether this pain 

had lasted for 3 months or longer. Those who chose ‘all over the body’ could not also select 

from the seven individual body sites. MCP was defined as the sum of body sites at which 

chronic pain (at least 3 months duration) was recorded: 0 to 7 sites. Those who answered that 

they had chronic pain ‘all over the body’ were excluded from the GWAS. The distribution of 

PGS for chronic pain in ELSA is depicted in Figure 23. A total of 1,351,316 SNPs overlapped 

with the ELSA genetic database with the GWAS summary statistics and were included in the 

PGS for chronic pain. 

 

Figure 23.  Distribution of PGS for Chronic pain 
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3.3.5.9. Gait speed 

PGSs for Gait speed were calculated using the summary statistic from a meta‐analysis of gait 

speed GWASs in 31478 older adults from 17 cohorts of the CHARGE consortium and 

validated our results in 2588 older adults from 4 independent studies. Timed walk at usual 

pace was converted to gait speed (m/s) to harmonize the phenotype across cohorts. The 

meta‐analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 

genes. The distribution of PGS for Gait speed in ELSA is depicted in Figure 24. A total of 

772,690 SNPs overlapped with the ELSA genetic database with the GWAS summary statistics 

and were included in the PGS for Gait speed phenotype.  

 

Figure 24.  Distribution of PGS for Gait speed 
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3.3.5.10. Relative grip strength 

PGSs for Relative grip strength using the summary statistics from a large genome-wide 

association study to discover genetic variation associated with muscular strength, and to 

evaluate shared genetic aetiology with and causal effects of muscular strength on several 

health indicators[55]. Association analysis was conducted with PLINK (version 2.0) assuming 

an additive model for association. Age, sex, genotype array and 10 principal components were 

used as covariates. Analysis was restricted to single. In our discovery analysis of 223,315 

individuals, we identified 101 loci associated with grip strength (P  GWAS <5 × 10−8). Of these, 

64 were associated (P < 0.01 and consistent direction) also in the replication dataset 

(N = 111,610). The distribution of PGS for Relative grip strength in ELSA is depicted in Figure 

25. A total of 1344065 SNPs overlapped with the ELSA genetic database with the GWAS 

summary statistics and were included in the PGS for Relative grip strength phenotype.  

 

Figure 25.  Distribution of PGS for relative grip strength 
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Table 10.  The summary statistics for PGS for physical health outcomes  

PGS Sample Size Minimum Maximum Range Median Mean SE (mean) 

Coronary Artery Disease (2011) 7183 14234.7 14525.7 291 14392.6 14392.3 0.43 

Coronary Artery Disease (2018) 7183 49133.5 49855.4 721.9 49463.6 49463.9 1.09 

Chronic pain 7183 5055.8 5147.8 92.0 5103. 7 5103.7 0.14 

Gait speed 7183 1532.8 1558.6 25.8 1547.5 1547.6 0.03 

Migraine (2016) 7183 31.6 55.5 23.9 44.0 44.1 0.03 

Myocardial infarction 7183 17838.4 18137.8 299.4 18013.4 18013.6 0.42 

Relative grip strength 7183 595.5 608.9 13.4 602.5 602.5 0.02 

Rheumatoid arthritis 7183 -1437.4 187.5 1624.8 -831.7 -811.0 2.87 

Type II Diabetes (2012) 7183 16806.4 17179.5 373.1 16998.8 16998.7 0.57 

Type II Diabetes (2018) 7183 9589.3 9851.1 261.8 9713.5 9714.2 0.40 

PGS, polygenic score; SE, standard error 
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Table 11.  Sources of the GWAS summary statistics used for these physical health outcomes  

Phenotype Consortium 
GWAS 

SNPs 

Overlapping 

with ELSA 

GWAS meta-analysis 

citation 
Source of base data 

 
Chronic pain (2018) UK Biobank 9,926,106 1,351,316 Johnston et al (2019)[54] 

https://data.broadinstitute.org/alkesgroup/B

OLT-LMM/ 

 
Coronary Artery Disease (2011) CARDIoGRAM 2,420,360 783,413 Schunkert et al. (2011)[47] 

www.cardiogramplusc4d.org 

(cad.add.160614.website.txt) 

 Coronary Artery Disease (2018) UK Biobank 9,087,334 1,349,976 Fall et al (2018)[48] https://grasp.nhlbi.nih.gov/FullResults.aspx 

 Gait speed (2017) CHARGE 2,474,503 772,690 Ben-Avraham et al (2017)[56] https://grasp.nhlbi.nih.gov/FullResults.aspx 

 
Migraine (any) - 7,208 1,188 Gormley et al (2016)[53] 

http://www.headachegenetics.org/content/d

atasets-and-cohorts 

 
Myocardial infarction CARDIoGRAM 9,289,491 1,299,282 

CARDIoGRAMplusC4D 

Consortium. (2015)[52] 

www.cardiogramplusc4d.org 

(mi.add.030315.website.txt) 

 Relative hand grip  UK Biobank 15,544,142 1,344,065 Tikkanen et al (2018)[55] https://grasp.nhlbi.nih.gov/FullResults.aspx 

 
Rheumatoid arthritis - 8,747,962 1,100,616 Okada et al. (2014)[51] 

http://plaza.umin.ac.jp/~yokada/datasource/

software.htm 

 Type II Diabetes (2012) DIAGRAM 2,473,441 761,488 Morris et al. (2012)[49] https://grasp.nhlbi.nih.gov/FullResults.aspx 

 

Type II Diabetes (2018) DIAGRAMv3 5,053,015 920,194 Xue et al (2018)[50] 

http://www.diagram-

consortium.org/downloads.html 

(DIAGRAMv3.2012DEC17.txt). 

CARDIoGRAM, Coronary ARtery DIsease Genome wide Replication and Meta-analysis; CHARGE, Heart and Aging Research in Genomic 

Epidemiology consortium; DIAGRAM, DIAbetes Genetics Replication and Meta-analysis Consortium 
 

 

 

 

http://plaza.umin.ac.jp/~yokada/datasource/software.htm
http://plaza.umin.ac.jp/~yokada/datasource/software.htm
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3.3.6. ANTHROPOMORPHIC TRAITS 

3.3.6.1. Height  

PGS for height was created using the results from a 2014 study conducted by the 

Genetic Investigation of ANthropometric Traits (GIANT) consortium [57]. The GIANT 

height meta-analysis included 253,288 individuals from 79 studies imputed to HapMap 

II with a total of 2,550,858 SNPs. Replication was performed in a sample of 80,067 

individuals. The participating studies adjusted for age and genetic PCs in their 

GWASs. Height was measured as sex standardised height (in centimetres). There 

were 697 GWAS significant SNPs identified that together explain one-fifth of 

heritability for adult height. The distribution of PGS for Height in ELSA is depicted in 

Figure 26. The PGS contains 831,045 SNPs that overlapped between the ELSA 

genetic database and the GIANT GWAS meta-analysis and that were included PGS 

for this phenotype.  

 

Figure 26.  Distribution of PGS for Height 

 



49 

3.3.6.2. Body Mass Index (BMI) - 2015 

PGS for BMI was created using results from a 2015 GWAS conducted by the Genetic 

Investigation of ANthropometric Traits (GIANT) consortium [58]. The GIANT GWAS 

meta-analysis was performed on a sample of 234,069 individuals from 80 studies 

across 2,550,021 SNPs, and separately in a Metabochip (MC) meta-analysis on a 

sample of 88,137 individuals from 34 studies across 156,997 SNPs. The joint GWAS 

and MC meta-analysis comprised of 322,154 individuals of European descent and 

17,072 individuals of non-European descent identified 97 GWS loci associated with 

BMI, 56 of which were novel. These loci accounted for 2.7% of the variation in BMI 

and suggest that as much as 21% of BMI variation can be accounted for by common 

genetic variation. Adjustment covariates within each contributing cohort GWAS 

included age, age2, sex and genetic PCs. The distribution of PGS for BMI in ELSA is 

depicted in Figure 27. The PGS contains 795,650 SNPs that overlapped between the 

ELSA genetic database and the GIANT GWAS meta-analysis which were included in 

PGS.  

 

Figure 27.  Distribution of PGS for BMI (2015) 

 

 

3.3.6.3. Body Mass Index (BMI) - 2018  

PGS for BMI was created using results from the present study which was part of a 

larger effort led by the GIANT consortium (2018)[59]. A GWAS of BMI was run in 

456,426 UKB participants using linear mixed model association testing implemented 

in BOLT-LMM v2.3 software assuming an infinitesimal model. Altogether, used 

711,933 HM3 SNPs (LD pruned for SNPs with r2>0.9) were used in the analyses. The 

model was adjusted for age, sex, recruitment centre, genotyping batches and 10 PCs 
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calculated from 132,102 out of the 147,604 genotyped SNPs pre-selected by the UKB 

quality control team for PC analysis. The distribution of PGS for BMI in ELSA is 

depicted in Figure 28. A total of 2529253 SNPs were included in the summary 

statistics. Of these, 798737 SNPs overlapped with the ELSA genetic database and 

were included in the PGS for BMI (2018). 

 

Figure 28.  Distribution of PGS for BMI (2018) 

 
 

3.3.6.4. Waist circumference & Waist-Hip Ratio  

PGS for waist circumference (WC) and waist-to-hip ratio (WHR) were created using 

results from a 2015 study conducted by the Genetic Investigation of ANthropometric 

Traits (GIANT) consortium [60]. GWAS meta-analysis was performed on a sample of 

142762 individuals from 57 studies, and separately in a Metabochip (MC) meta-

analysis on a sample of 67,326 individuals from 44 studies across 124,196 SNPs. A 

joint GWAS and MC meta-analysis was then carried out on 210,088 individuals across 

93057 SNPs. The GWAS identified 49 loci associated with WHR and an additional 19 

loci associated with WC at the genome-wide significance level. Association analyses 

adjusted for age, age2, study-specific covariates if necessary, and BMI. The 

distributions of PGSs for Waist circumference & Waist-Hip Ratio are depicted in 

Figure 29. PGS for WC in ELSA contain 801,114 SNPs that overlapped between the 

ELSA genetic database and the GIANT GWAS meta-analysis. PGS for WHR in ELSA 

contains 801,207 SNPs that overlapped between the ELSA genetic database and the 

GIANT GWAS meta-analysis.  
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Figure 29.  Distribution of PGS for WC and WHR  

 
PGS, polygenic score; WC, waist circumference; WHR, Waist-Hip Ratio 
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Table 12.  Descriptive statistics for PGS for anthropomorphic traits 

PGS  Sample Size Minimum Maximum Range Median Mean SE (mean) 

BMI (2015) 7183 3594.0 3676 82.1 3635.1 3635 0.14 

BMI (2018) 7183 2524.6 2605.1 80.5 2563.9 2564.0 0.13 

Height  7183 4498.4 4656.5 158.1 4586.6 4586.5 0.22 

Waist circumference 7183 4106.3 4205.5 99.2 4157.5 4157.6 0.14 

Waist-to-hip ratio 7183 4070.5 4176.6 106.1 4127.1 4126.9 0.14 

PGS, polygenic score; SE, standard error; WC, waist circumference; WHR, Waist-Hip Ratio 

 

 

Table 13.  Sources of the GWAS summary statistics used for these anthropomorphic traits 

Phenotype Consortium 
GWAS 
SNPs 

Overlapping 
with ELSA 

GWAS meta-analysis 
citation 

Source of base data 

 
Body Mass Index (2015) GIANT 2,554,623 795,650 Locke et al. (2015)[58] 

https://www.broadinstitute.org/collaboration/giant/index.php/GI
ANT_consortium_data_files 

 
Body Mass Index (2018) GIANT 2,529,253 798,737 Yengo et al (2018)[59] 

https://portals.broadinstitute.org/collaboration/giant/index.php/
GIANT_consortium_data_files 

 
Height GIANT 2,550,858 831,045 Wood et al. (2014)[57] 

https://www.broadinstitute.org/collaboration/giant/index.php/GI
ANT_consortium_data_files 

 
Waist circumference GIANT 2,565,407 801,114 

Shungin et al. (2015)[60] 

https://www.broadinstitute.org/collaboration/giant/index.php/GI
ANT_consortium_data_files; WC: GIANT 2015 WC 

COMBINED EUR.txt.gz 
 

Waist-to-hip ratio GIANT 2,542,431 801,207 
https://www.broadinstitute.org/collaboration/giant/index.php/GI

ANT_consortium_data_files; WHR: GIANT 2015 WHR 
COMBINED EUR.txt.gz 

 

 

 

https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files;%20WC:%20GIANT%202015%20WC%20COMBINED%20EUR.txt.gz
https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files;%20WC:%20GIANT%202015%20WC%20COMBINED%20EUR.txt.gz
https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files;%20WC:%20GIANT%202015%20WC%20COMBINED%20EUR.txt.gz
https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files;%20WHR:%20GIANT%202015%20WHR%20COMBINED%20EUR.txt.gz
https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files;%20WHR:%20GIANT%202015%20WHR%20COMBINED%20EUR.txt.gz
https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files;%20WHR:%20GIANT%202015%20WHR%20COMBINED%20EUR.txt.gz
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3.3.7. BEHAVIOURAL TRAITS  

3.3.7.1. SMOKING BEHAVIOUR  

3.3.7.1.1. Smoking ever (2010) 

PGS for smoking behaviours in ELSA was contracted using the results from the Tobacco and 

Genetics (TAG) Consortium (2010) [61]. The TAG examined four smoking phenotypes - 

smoking initiation (ever versus never been a regular smoker), age of smoking initiation, 

smoking quantity (number of cigarettes smoked per day, CPD) and smoking cessation (former 

versus current smokers) - among people of European ancestry. In ELSA we created PGSs for 

two of these smoking phenotypes - 1) CPD and 2) Smoking initiation. The TAG GWAS 

included a total of 74,053 participants in the discovery phase of the analysis; another 73,853 

participants were included in a follow-up meta-analysis of the 15 most significant regions. The 

included studies were genotyped on six different platforms. Genotype imputations resulted in 

a common set of ∼2.5 million of SNPs. 

 

3.3.7.1.2 Number of cigarettes smoked per day - 2010 

In the TAG consortium Number of cigarettes smoked per day (CPD) was measured as either 

average CPD or maximum CPD in a sample of 73,853 individuals. Study-specific GWAS 

controlled for imputed allele dosage for a SNP plus whether a subject was classified as a case 

in the primary study. If the primary study was a case-control design and the phenotype being 

studied was known to be associated with smoking, the GWAS adjusted for case status to 

reduce the potential confounding. Analyses were run and meta-analysed separately for males 

and females. The distribution of PGS for CPD in ELSA is depicted in Figure 39; the summary 

statistics for PGS for CPD are provided in Table 37. TAG GWAS summary statistics contained 

2,459,118 SNPs of which 803,092 SNPs overlapped with the ELSA genetic database and 

were included in the PGS for the CPD phenotype. 

 

3.3.7.1.3. Smoking initiation (ever/never) - 2010 

In the TAG consortium individuals who were recorded as having ever been regular smokers 

were defined as those who reported having smoked at least 100 cigarettes during their lifetime, 

and never regular smokers were defined as those who reported having smoked between 0 

and 99 cigarettes during their lifetime. Study-specific GWASs controlled for imputed allele 

dosage for a SNP plus whether a subject was classified as a case in the primary study. If the 

primary study was a case-control in design and the phenotype being studied was known to be 

associated with smoking, the GWAS adjusted for case status to reduce potential confounding. 

Analyses were run and meta-analysed separately for males and females. The distribution of 

PGS for Smoking initiation in ELSA is depicted in Figure 39; the summary statistics for PGS 

for smoking initiation are provided in Table 37. The TAG GWAS summary statistics for this 

smoking phenotype was based on the sample of 143,023 individuals and contained 2,455,846 

SNPs; of these, 804,337 SNPs overlapped with the ELSA genetic database and were included 

in the PGS for smoking initiation phenotype.  

 

3.3.7.1.4. Age of smoking initiation (2019) 

The PGSs for the age of smoking initiation (2019) was calculated using summary statistics 

from the study that combined study-level summary association data from 1.2 million individuals 
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of European ancestry[62]. These GWAS summary statistics are publicly available; the link to 

the website and the file can be found in Error! Reference source not found. The majority of 

studies imputed their genotypes to the Haplotype Reference Consortium  using the University 

of Michigan Imputation Server. All studies used either Minimac3or IMPUTE2 for imputation. 

Sample sizes ranged from 337,334 for cigarettes per day to 1,232,091 for smoking initiation. 

All studies adjusted each trait for age, age squared, sex, and genetic principal components 

and other study specific covariates in their analyses (e.g., case-control status, site in multi-site 

studies). Age of smoking initiation was defined as age at which an individual started smoking 

cigarettes regularly. The GWAS summary statistics contained 11,802,365 SNPs of which 

1,339,648 SNPs overlapped with the ELSA genetic database and were included in the PGS 

for Age of smoking initiation.  

3.3.7.1.5. Smoking Cessation (2019) 

The PGSs for Smoking Cessation (2019) was calculated using summary statistics from[62]. 

Smoking cessation phenotype was defined as a binary trait: former vs current smokers. The 

GWAS summary statistics contained 12,197,133 SNPs of which 1,347,877 SNPs overlapped 

with the ELSA genetic database and were included in the PGS for Smoking Cessation (2019).  

 

3.3.7.1.6. Smoking initiation (2019) 

The PGSs for the smoking initiation (2019) was calculated using summary statistics from the 

study that combined study-level summary association data from up to 59 studies of European 

ancestry[62]. For more details please refer to section 3.3.7.1.2. Smoking initiation (binary trait: 

ever vs never smokers) was defined as individuals who have smoked >99 cigarettes in their 

lifetime, which is consistent with the definition by the Centre for Disease Control. The 

distribution of PGS for Smoking initiation (2019). The GWAS summary statistics contained 

11,916,706 SNPs of which 1,341,672 SNPs overlapped with the ELSA genetic database and 

were included in the PGS for Smoking initiation (2019).  

 

3.3.7.1.7. Number of cigarettes per day (2019) 

The PGSs for Number of cigarettes per day (2019) was calculated using summary statistics 

from genome-wide association study of 1.2 million individuals yield new insights into the 

genetic etiology of tobacco and alcohol use[62]. For more details please refer to section 

3.3.7.1.2. Number of cigarettes per day was defined as the average number of cigarettes 

smoked per day, either as a current smoker or former smoker, and whether self-rolled or 

manufactured are smoked (most studies did not distinguish). Individuals who either never 

smoked, or for whom there is no available data (e.g., someone was a former smoker, but for 

whom former smoking was never assessed) were set to missing. The distribution of PGS for 

The GWAS summary statistics contained 12,003,613 SNPs of which 1,341,672 SNPs 

overlapped with the ELSA genetic database and were included in the PGS for Number of 

cigarettes per day (2019).  

 

3.3.7.2. ALCOHOL INTAKE 

3.3.7.2.1. Daily Alcohol Intake (2016)  

PGS for smoking behaviours in ELSA was calculated using the results from the genome-wide 

association meta-analysis and replication study among >105,000 individuals of European 
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ancestry[63]. These GWAS summary statistics are publicly available. Alcohol intake in grams 

of alcohol per day was estimated by each cohort based on information about drinking 

frequency and type of alcohol consumed. The grams per day variable was then log10 

transformed before the analysis. Sex-specific residuals were derived by regressing alcohol in 

log10 (grams per day) in a linear model on age, age2, weight, and if applicable, study site and 

principal components to account for population structure. The sex-specific residuals were 

pooled and used as the main phenotype for subsequent analyses. The GWAS summary 

statistics for the Daily Alcohol Intake phenotype included 2,462,742 SNPs; of these, 800,524 

SNPs overlapped with the ELSA genetic database and were included in the PGS for Daily 

Alcohol Intake phenotype.  

 

3.3.7.2.2. Drinking alcohol per week (2019) 

The PGSs for the Drinking alcohol per week (2019) was calculated using summary statistics 

from genome-wide association study of 1.2 million individuals yield new insights into the 

genetic etiology of tobacco and alcohol use[62]. The GWAS summary statistics for the Daily 

Alcohol Intake phenotype included 11916706 SNPs; of these, 1342722 SNPs overlapped with 

the ELSA genetic database and were included in the PGS for Daily Alcohol Intake phenotype. 
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Table 14.  The summary statistics for PGS for behavioural traits 

PGS Sample Size Minimum Maximum Range Median Mean 
SE 

(mean) 

        

Age of smoking initiation (2019) 7183 5319.9 5273.3 5273.1 5236.3 83.7 0.14 

Daily alcohol intake (2019)  7183 2603.6 2666.0 62.4 2642.5 2642.4 0.08 

Drinking alcohol per week (2019) 7183 3788.4 3856.3 67.9 3819.7 3819.7 0.10 

Number of cigarettes smoked daily (2019) 7183 10793.5 10716.4 10716.2 10625.0 168.5 0.28 

Smoking cessation (2019) 7183 9744.9 9925.2 180.3 9827.1 9828.0 0.28 

Smoking initiation (2010)  7183 13540.9 13415.2 13414.7 13289 251.9 0.39 

Smoking initiation (2019)  7183 7554.5 7468.2 7467.8 7387.4 167.1 0.25 

Smoking initiation (2019) 7183 10625.0 10793.5 168.5 10716.2 10716.3 0.28 

Number of cigarettes smoked (2010) 7183 95447.3 94694.4 94696.9 93951.2 1496.1 2.50 

PGS, polygenic score; SE, standard error 

 

 

Table 15.  Outlines details of the GWAS summary statistics used for these behavioural traits  

Phenotype Consortium 
GWAS 

SNPs 

Overlapping 

with ELSA 
GWAS meta-analysis citation Source of base data 

Smoking Initiation (ever/never) (2010) TAG 2,455,846 804,337 
Tobacco and Genetics Consortium 

(2010) [61] 

https://www.med.unc.edu/pgc/results-and-

downloads (tag.evrsmk.tbl.gz) 

Number of cigarettes per day (2010) TAG 2,459,118 803,092 
https://www.med.unc.edu/pgc/results-and-

downloads (tag.cpd.tbl.gz) 

Age of smoking initiation (2019) 

GSCAN 

11,802,365 1,339,648 

Liu et al (2019)[62] https://genome.psych.umn.edu/index.php/GSCAN 
Smoking Cessation (2019) 12,197,133 1,347,877 

Smoking initiation (2019) 11,916,706 1,341,672 

Number of cigarettes per day (2019)   

Daily Alcohol Intake (2016) - 2,462,742 800,524 Schumann et al (2016)[63] https://grasp.nhlbi.nih.gov/FullResults.aspx 

Drinking alcohol per week (2019) GSCAN 12,003,613 1,341,672 Liu et al (2019)[62] https://genome.psych.umn.edu/index.php/GSCAN 

TAG, Tobacco and Genetics; GSCAN, GWAS & Sequencing Consortium of Alcohol and Nicotine use 
 

 

https://www.med.unc.edu/pgc/results-and-downloads%20(tag.evrsmk.tbl.gz)
https://www.med.unc.edu/pgc/results-and-downloads%20(tag.evrsmk.tbl.gz)
https://www.med.unc.edu/pgc/results-and-downloads%20(tag.cpd.tbl.gz)
https://www.med.unc.edu/pgc/results-and-downloads%20(tag.cpd.tbl.gz)
https://genome.psych.umn.edu/index.php/GSCAN
https://genome.psych.umn.edu/index.php/GSCAN
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3.3.8. BIOLOGICAL OUTCOMES 

3.3.8.1. Morning Plasma cortisol  

PGS for morning plasma cortisol in ELSA was contracted using the results from the 

CORtisol NETwork (CORNET) consortium which undertook the GWAS meta-analysis 

for plasma cortisol in 12,597 Caucasian participants from 11 western European 

population-based cohorts, and replicated their results in 2,795 participants from three 

independent cohorts [64]. Cortisol was measured by immunoassay in blood samples 

collected from study participants between 07:00h and 11:00h. Each study performed 

single marker association tests, and study-specific linear regression models which 

used z-scores of log-transformed cortisol, additive SNP effects, and were adjusted for 

age and sex (model 1); age, sex, and smoking (model 2); or age, sex, smoking and 

body mass index (model 3). Imputation of the gene-chip results used the HapMap 

CEU population, build 36. The results indicate that <1% of variance in plasma cortisol 

is accounted for by genetic variation in a single region of chromosome 14. The 

CORNET GWAS summary statistics for this phenotype contained 2,660,191 SNPs; of 

these, 837,709 SNPs overlapped with the ELSA genetic database and were included 

in the PGS for Morning Plasma Cortisol phenotype.  

 

Figure 30.  Distribution of PGS for Morning Plasma cortisol 

 
 

 

 

3.3.8.2. C-reactive protein (2018) 

PGS for C-reactive protein in ELSA was contracted using the results from two 

genome-wide association studies (GWASs), based on both HapMap and 1000 

Genomes imputed data and encompassing data from 88 studies comprising 204,402 

European individuals[65]. The GWAS meta-analyses of C-reactive protein revealed 

58 distinct genetic loci (p < 5 × 10−8). After adjustment for body mass index in the 

regression analysis, the associations at all except three loci remained. The lead 



58 

variants at the distinct loci explained up to 7.0% of the variance in circulating amounts 

of C-reactive protein. Further 66 gene sets that were organized in two substantially 

correlated clusters were identified, one mainly composed of immune pathways and 

the other characterized by metabolic pathways in the liver. The summary statistics for 

C-reactive protein were obtained on request from the authors. The distribution of PGS 

for C-reactive protein in ELSA is depicted in Figure 31. The GWAS summary statistics 

for this phenotype contained 10019203 SNPs; of these, 1,301,076 SNPs overlapped 

with the ELSA genetic database and were included in the PGS for C-reactive protein 

phenotype. 

 

Figure 31.  Distribution of PGSs for C-reactive protein 

  
 

3.3.8.3. C-reactive protein (2022) 

After exclusions, 427367 UKB participants contributed to the GWAS analysis which identified 

49164 SNPs associated with CRP levels (at genome wide significance (GWS) of p < 5 × 10−8) 

[66]. Linear Mixed Model (LMM) regression using BOLT-LMM version 2.343 was performed 

on CRP levels in UKB. This model accounts for cryptic relatedness within the sample. Here, 

an additive genetic model was used for all 8.9 million measured and imputed genetic variants. 

The model was adjusted for age, sex, UKB array (UKB vs UK BiLEVE to account for the 

different genotyping chips) and 40 genetic principal components. Further, serum CRP levels 

(mg/l was measured by immunoturbidimetry). CRP levels were transformed using natural log 

and the resulting range included was from −2.53 to 4.38, excluding individuals with extreme 

values ±4 SD from the mean. Individuals on immune modulating drugs, with auto-immune 

related diseases/disorders, which constituted 1.8% of the sample, were removed.  
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3.3.8.4. Blood traits  

Blood cell counts and indices are quantitative clinical laboratory measures that reflect 

hematopoietic progenitor cell production, hemoglobin synthesis, maturation, release 

from the bone marrow, and clearance of mature or senescent blood cells from the 

circulation. This GWAS meta-analyses included data from UK Biobank and a large-

scale international collaborative effort, including data for 563,085 European ancestry 

participants, and discover 5,106 new genetic variants independently associated with 

29 blood cell phenotypes covering a range of variation impacting hematopoiesis [67, 

68].  

 

The following phenotypes were examined:  

Basophil count (BASO) (percentage of white cells that are basophils × WBC) 109/L Relative 

basophil count = percentage of white cells that are basophils × WBC 

Eosinophil count (EOS) (percentage of white cells that are eosinophils × WBC) 109/L 

Relative eosinophil count = percentage of white cells that are eosinophils × WBC 

Hematocrit (HCT) % Proportion of blood made up of red blood cells 

Hemoglobin (HGB) concentration g/dL Concentration of hemoglobin in each volume of blood 

Lymphocyte count (LYM) (percentage of white cells that are lymphocytes × WBC) 109/L: 

Relative lymphocyte count = percentage of white cells that are lymphocytes × WBC 

Mean corpuscular hemoglobin (MCH) pg: Average mass of hemoglobin per red blood cell 

Mean corpuscular volume (MCV) fL: Average volume of red blood cells 

Mean platelet volume (MPV) fL: Average volume of platelets 

Neutrophil count (NEU) (percentage of white cells that are neutrophils × WBC) 109/L 

Relative neutrophil count = percentage of white cells that are neutrophils × WBC 

Platelet count (PLT) 109/L: Number of platelets per unit volume of blood 

Red blood cell (RBC) count 1012/L: Number of red blood cells per unit volume of blood 

Red cell distribution (RDW) width % Range of variation of red blood cell volume 

White blood cell (WBC) count 109/L: Aggregate number of white blood cells per unit volume 

of blood 
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Raw phenotypes were regressed on age, age- squared, sex, principal components and cohort 

specific covariates (e.g., study center, cohort, etc) if needed, WBC related traits were log10 

transformed before regression modeling. Residuals from the modeling were obtained and then 

inverse normalized for cohort level association analysis or GWAS. The cohort level association 

analyses were then conducted using a linear mixed effects model to account for known or 

cryptic relatedness (e.g., BOLT-LMM, EPACTS https://github.com/statgen/EPACTS and 

rvtests with the additive genetic model. Linear mixed effects models have been shown to 

effectively account for both population structure and inter-individual relatedness within the UK 

Biobank cohort, along with having increased discovery power over simple linear regression 

with principal components.  

 

Figure 32. represents correlations between each quantitative clinical laboratory 
measures 
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Table 16.  The summary statistics for PGS for biological outcomes 

Biological outcomes Sample Size Minimum Maximum Range Median Mean SE (mean) 

Morning plasma cortisol 7183 14626.3 14853.8 227.5 14750.8 14751.3 0.37 

C-reactive protein (2018) 7183 8251.9 8282.4 30.5 8266.7 8266.7 0.05 

C-reactive protein (2022) 7183 4583.5 4692.0 108.5 4636.8 4636.9 0.18 

Eosinophil count (EOS) 7183 6838.7 7795.1 956.4 7374.6 7372.0 1.28 

Hematocrit (HCT) 7183 1537.0 1615.6 78.6 1579.58 1579.5 0.13 

Hemoglobin (HGB) 7183 5563.0 5919.1 356.1 5769.3 5766.7 0.55 

Lymphocyte count (LYM) 7183 6969.4 7801.7 832.3 7461.2 7456.3 1.30 

Mean corpuscular hemoglobin (MCH) 7183 7869.0 9181.1 1312.1 8561.6 8558.6 1.98 

Mean corpuscular volume (MCV) 7183 7287.1 8412.8 1125.7 7810.1 7809.9 1.51 

Mean platelet volume (MPV) 7183 34548.1 34867.7 319.6 34705.8 34705.6 0.50 

Basophil count (BASO) 7183 2471.5 3324.3 852.8 2981.0 29798.0 1.30 

Neutrophil count (NEU) 7183 4999.0 5276.83 280.87 5166.4 5160.6 0.47 

Platelet count (PLT) 7183 5547.13 5805.73 258.6 5681.0 5681.0 0.38 

Red blood cell (RBC) 7183 7581.76 8629.73 1048.0 8100.54 8099.6 1.74 

Red cell distribution (RDW) 7183 7595.6 8666.0 1070.4 8099.2 8100.1 1.82 

White blood cell (WBC) 7183 549.1 5858.8 419.6 5701.0 5692.0 0.68 

PGS, polygenic score; SE, standard error 
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Table 17.  Sources of the GWAS summary statistics used for these biological outcomes  

Phenotype Consortium 
GWAS 
SNPs 

Overlapping 
with ELSA 

GWAS meta-analysis 
citation 

Source of base data 

 
Plasma cortisol (morning) CORNET 2,660,191 837,709 Bolton et al. (2014)[64] 

https://datashare.is.ed.ac.uk/
handle/10283/2787 

 
C-reactive protein (2018) CHARGE 10,019,203 1,301,076 

Ligthart et al 
(2018)[65] 

On request from the authors 

 
C-reactive protein (2022) 

UKB and 
CHARGE 

9,967,405 1,331,207 Said et al (2022)[66] 
https://www.ebi.ac.uk/gwas/s

tudies/GCST90029070 
 Eosinophil count (2020) 

UK Biobank 
 

26,776,137 1,357,065 

Vuckovich et al (2020) 
[67] 

https://grasp.nhlbi.nih.gov/Ful
lResults.aspx 

 Hematocrit (2020) 27,103,386 400,380 
 Hemoglobin (2020) 27,102,009 1,361,427 
 Lymphocyte count (2020) 26,949,845 1,349,070 
 Mean corpuscular hemoglobin (2020) 26,861,301 1,358,545 
 Mean corpuscular volume (2020) 27,093,177 1,355,090 
 Mean platelet volume (2020) 22,594,326 1,355,090 
 Basophil count (2020) 26,797,909 545,506 
 Neutrophil count (2020) 26,745,219 1,352,901 
 Platelet count (2020) 26,985,305 1,352,668 
 Red blood cell (2020) 27,099,926 1,357,201 
 Red cell distribution (2020) 26,978,706 1,351,605 
 White blood cell (2020) 27,090,932 1,352,140 

UKB, UK Biobank; CHARGE, Heart and Aging Research in Genomic Epidemiology consortium; CORNET, CORtisol NETwork consortium  
 

 

 

 

https://datashare.is.ed.ac.uk/handle/10283/2787
https://datashare.is.ed.ac.uk/handle/10283/2787
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3.3.9. SLEEP-RELATED BEHAVIOURS AND OUTCOMES  

3.3.9.1. Insomnia Complaints (2017) 

PGS for the Insomnia complaints in ELSA was calculated using the GWAS results from the 

UK Biobank including ∼73 million genetic variants in 152,249 individuals[43]. The first ∼50,000 

samples were genotyped on the UK BiLEVE custom array, and the remaining ∼100,000 

samples were genotyped on the UK Biobank Axiom array. After standard quality control of the 

SNPs and samples, which was performed by UK Biobank, the data set comprised 641,018 

autosomal SNPs in 113,006 samples of European ancestry for phasing and imputation. 

Imputation was performed with a reference panel that included the UK10K haplotype panel 

and the 1000 Genomes Project Phase 3 reference panel. Association tests were performed 

in SNPTEST using logistic regression with the covariates age, sex (for the full sample), 

genotyping array, the top five genetically determined PCs and additional PCs out of ten further 

ones that were associated with the phenotype (tested by logistic regression). The distribution 

of PGS for Insomnia Complaints in ELSA is depicted in Figure 33. The PGS contain 803,361 

SNPs that overlapped between the ELSA genetic database and the GWAS meta-analysis; 

these SNPs were included in the PGS for Insomnia Complaints.  

 

Figure 33.  Distribution of PGS for Insomnia Complaints 

 
 

3.3.9.2. Sleep duration (2017) 

PGSs for sleep duration in ELSA using the GWAS summary statistics perfumed using the data 

from the UK Biobank[69]. Sleep duration was a self-reported phenotype where study 

participants were asked, “About how many hours sleep do you get in every 24 hours? (please 

include naps),” with responses in hour increments. Participant DNA was genotyped on two 

arrays, UK BiLEVE and UKB Axiom, with >95% common content. Genotypes for 152,736 

samples passed sample quality control (∼99.9% of total samples). Before imputation, 806,466 

SNPs passed quality control in at least one batch (>99% of the array content). Imputation of 

autosomal SNPs was performed to a merged reference panel comprising the Phase 3 1000 

Genomes Project and UK10K panels. Genetic association analysis for autosomes was 
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performed in SNPTEST with the 'expected' method using an additive genetic model adjusted 

for age, sex, ten principal components and genotyping array. The distribution of PGS for Sleep 

Duration in ELSA is depicted in Figure 30. A total of 948331 SNPs overlapped with the ELSA 

genetic database with the GWAS summary statistics and were included in the PGS for this 

phenotype.  

 

3.3.9.3. Sleep duration, short-sleep, and long-sleep (2019)  

The GWAS summary statistics for these phenotypes came from the UK Biobank study, which 

is a prospective study of >500,000 people living in the United Kingdom[70]. All people in the 

National Health Service registry who were aged 40-69 years and living <25 miles from a study 

centre were invited to participate between 2006 and 2010. In total, 503,325 participants were 

recruited from over 9.2 million invitations. For the current analysis, 24533 individuals of non-

white ethnicity (as defined in genotyping and quality control) were excluded to avoid 

confounding effects. Study participants (n ~ 500,000) self-reported sleep duration at baseline 

assessment. Participants were asked: About how many hours sleep do you get in every 24 h? 

(please include naps), with responses in hour increments. Sleep duration was treated as a 

continuous variable and also categorized as either short (6 h or less), normal (7 or 8 h), or long 

(9 h or more) sleep duration. Extreme responses of less than 3 h or more than 18 h were 

excluded, and ‘Do not know’ or ‘Prefer not to answer’ responses were set to missing. 

Participants who self-reported any sleep medication were excluded. The results highlighted 

identify 78 loci for self-reported habitual sleep duration (p < 5 × 10−8; 43 loci at p < 6 × 10−9). 

Separate GWAS for short (<7 h; n = 106,192 cases) and long (≥9 h; n = 34,184 cases) sleep 

relative to 7–8 h sleep duration (n = 305,742 controls) highlighted 27 and 8 loci, respectively, 

of which 13 were independent from the 78 sleep duration loci 

 

3.3.9.4. Insomnia (2019) 

A meta-analysis of the GWAS results of insomnia and morningness in the UKB and 23andMe 

cohorts was performed using fixed-effects meta-analysis METAL, using SNP P values 

weighted by sample size[71]. The prevalence of insomnia was 28.3% in the UKB version 2 

sample, 30.5% in the 23andMe sample, and 29.9% in the combined sample, which is in 

keeping with previous estimates for people of advanced age in the UK. Older people dominate 

the UKB (mean age = 56.7, s.d. = 8.0) and 23andMe (two-thirds of the sample older than 45, 

one-third older than 60 years of age) samples. Meta-analysis identified 11990 GWS SNPs 

(P < 5 × 10−8), represented by 248 independent lead SNPs (r2 < 0.1), located in 202 genomic 

risk loci. All lead SNPs showed concordant signs of effect in both samples (Supplementary 

Fig. 3b). We confirmed two (chr2:66,785,180 and chr5:135,393,752) out of six previously 

reported loci for insomnia. Polygenic score (PGS) prediction in three randomly selected hold-

out samples (n = 3 × 3,000) estimated the current results to explain up to 2.6% of the variance 

in insomnia.  

 

3.3.9.5. Morningness, ease of waking up, naps, daytime dozing, and snoring 

Morningness. The genome-wide meta-analysis on morningness included 434,835 subjects 

and 11,597,492 SNPs[71]. The genetic correlation between the two samples included in the 

meta-analysis (UKB, N=345552 and 23andMe, N=89283) was estimated at 0.92 (SE=0.02). 

The individual GWAS’s showed some inflation in genetic signal (λ=1.603 for UKB and λ=1.253 
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for 23andMe) and mean χ2 statistic (1.815 and 1.302, respectively). The LD Score regression 

(LDSC) intercept was 1.046; (SE=0.011) for UKB and 1.007 (SE=0.008) for 23andMe. The 

two cohorts were meta-analyzed in METAL. The quantile-quantile (Q-Q) plot of the meta-

analysed results also showed moderate inflation in λ (1.749) and mean χ2 statistic (2.073). 

The LDSC SNP-based heritability (h2
SNP) of morningness was 0.186 (SE=0.006). The 

morningness GWAS analysis identified 16805 GWS SNPs (P<5×10-8), represented by 274 

independent lead SNPs, which were mapped to 207 independent genomic loci 

 

Ease of getting up. The genome-wide analysis for ease of getting up included 385,949 

subjects and 10862568 SNPs[71]. All subjects were derived from the UKB sample. The Q-Q 

plot of the genome-wide analysis showed some inflation (λ=1.446) and mean χ2 statistic 

(1.586). The LDSC intercept (1.041; SE=0.010) was consistent with inflation due to true 

polygenicity and large sample size. The LDSC SNP-based heritability (h2SNP) of ease of 

getting up was 0.071 (SE=0.003). The ease of getting up GWAS analysis identified 7248 GWS 

SNPs (P<5×10-8), represented by 70 independent lead SNPs, which were mapped to 62 

independent genomic loci. 

 

Daytime Napping. The genome-wide analysis on daytime napping included 386,577 subjects 

and 10858887 SNPs[71]. All subjects were derived from the UKB sample. The QQ-plot of the 

genome-wide analysis showed some inflation (λ=1.159) and mean χ2 statistic (1.178). The LD 

score regression (LDSC) intercept (0.995; SE=0.007) was consistent with inflation due to true 

polygenicity and large sample size. The LDSC SNP-based heritability (h2
SNP) of napping was 

0.105 (SE=0.008). The daytime napping GWAS analysis identified 2,339 GWS SNPs 

(P<5×10-8), represented by 7 independent lead SNPs, which were mapped to 7 independent 

genomic loci. 

 

Daytime Sleepiness/Dozing. The genome-wide analysis on dozing included 386,548 subjects 

and 10,820,725 SNPs[71]. All subjects were derived from the UKB sample. The Q-Q plot of 

the genome-wide analysis showed some inflation (λ=1.105) and mean χ2 statistic (1.107). The 

LDSC intercept (1.007; SE=0.007) was consistent with inflation due to true polygenicity and 

large sample size. The LDSC SNP-based heritability (h2
SNP) of dozing was 0.091 (SE=0.010). 

The dozing GWAS analysis identified 9 GWS SNPs (P<5×10-8), represented by a single 

independent lead SNP (rs28600082, P=1.08×10-8) on chromosome 4, with surrounding SNPs 

located in non-coding RNA regions. The single risk locus for dozing was not shared with 

insomnia. 

 

Snoring. The genome-wide analysis on snoring included 359,916 subjects and 10,862,568 

SNPs[71]. All subjects were derived from the UKB sample. The QQ-plot of the genome-wide 

analysis showed some inflation (λ=1.358) and mean χ2 statistic (1.443). The LDSC intercept 

(1.010; SE=0.009) was consistent with inflation due to true polygenicity and large sample size. 

The LDSC SNP-based heritability (h2
SNP) of snoring was 0.101 (SE=0.004). The snoring 

GWAS analysis identified 3,416 GWS SNPs (P<5×10-8), represented by 41 independent lead 

SNPs, which were mapped to 36 independent genomic loci.  

 

 

 



66 

Figure 34.  Distribution of PGS for morningness, ease of waking up, naps, daytime dozing, 
and snoring 
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Table 18.  The summary statistics for PGS for Sleep related traits  

PGS  
Sample Size Minimum Maximum Range Median Mean SE (mean) 

       

Day time dozing (2019)  7183 -1275.9 1169.3 2445.2 -31.7 -25.4 3.45 

Taking naps during the day (2019) 7183 -993.6 767.9 1761.6 -53.9 -55.0 2.86 

Ease of getting up in the morning (2019)  7183 -140.6 223.4 364.1 24.3 24.3 0.57 

Insomnia (2019) 7183 -308.7 542.0 850.7 105.1 106.3 1.40 

Insomnia complaints (2017) 7183 789190 803945 14755 796054 796025.2 24.2 

Morningness (2019)  7183 -251.9 286.1 537.9 41.5 42.1 0.81 

Sleep duration (2017) 7183 5552.6 5665.2 112.6 5610.3 5610.2 0.18 

Sleep duration (2019) 7183 -307.8 185.9 493.7 -41.1 -42.1 0.79 

Sleep long (2019)  7183 7525.0 7674.2 149.3 7607.1 7607.1 0.20 

Sleep short (2019)  7183 10407.5 10580.5 173.0 10490.2 10490.3 0.29 

Snoring (2019) 7183 -446.9 560.0 1006.9 22.5 24.5 1.53 

PGS, polygenic score; SE, standard error 
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Figure 35.  Correlations between each sleep-related trait  
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Table 19.  Sources of the GWAS summary statistics used for these sleep-related traits  

Phenotype Consortium 
GWAS 
SNPs 

Overlapping 
with ELSA 

GWAS meta-
analysis citation 

Source of base data 

Insomnia complaints (2017) 
UK Biobank - - 

Hammerschlag et 
al. (2017)[43] 

http://ctg.cncr.nl/software/summary_statistics.  

Sleep duration (2017) 
UK Biobank - - 

Lane et al. 
(2017)[69] 

Summary GWAS statistics will be made 
available at the UK Biobank website 

(http://biobank.ctsu.ox.ac.uk/). 
Insomnia (2019) 

UK Biobank 10,857,968 2,092,574 
Jansen et al 
(2019)[71] 

https://ctg.cncr.nl/software/summary_statistics 

Sleep duration (2019) 

UK Biobank 
& 23andMe 

10,862,567 2,092,574 

Dashti et al. (2019) 
[70] 

Summary GWAS statistics are publicly 
available at the Sleep Disorder Knowledge 

Portal (http://sleepdisordergenetics.org/) and 
the UK Biobank website 

(http://biobank.ctsu.ox.ac.uk/). 

Sleep long (2019)  14,661,601 6,246,221 
Sleep short (2019)  

14,661,601 6,227,565 

Day time dozing (2019)  10,854,289 2,092,574 

Jansen et al 
(2019)[71] 

https://ctg.cncr.nl/software/summary_statistics 
Taking naps during the day (2019) 10,820,724 2,092,574 
Ease of getting up in the morning (2019)  10,657,969 2,092,574 
Morningness (2019) 10,862,567 2,092,574 
Snoring (2019) 10,857,969 2,092,574 

 

 

 

 

http://ctg.cncr.nl/software/summary_statistics
http://biobank.ctsu.ox.ac.uk/
http://sleepdisordergenetics.org/
http://biobank.ctsu.ox.ac.uk/
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3.3.10. REPRODUCTIVE FACTORS 

3.3.10.1 Age at Menarche 

PGSs for age at menarche were created using results from a 2014 study conducted 

by the Reproductive Genetics (ReproGen) consortium[72]. The ReproGen meta-

analysis included 182,416 women of European descent from 57 studies imputed to 

HapMap Phase 2 CEU build 35 or 36 with a total of 2,441,815 autosomal SNPs. Birth 

year was the only covariate included to allow for the secular trends in menarche timing. 

The study reported 3,915 genome-wide significant SNPs. Of these, the authors 

identified 123 independent signals for age at menarche, which they assessed further 

in an independent sample of 8,689 women from the EPIC-InterAct study. The 

ReproGen GWAS summary statistics for this phenotype contained 2,441,815 SNPs; 

of these, 793,272 SNPs overlapped with the ELSA genetic database and were 

included in the PGS for Age at Menarche phenotype. 

 

3.3.10.2. Age at Menopause 

PGSs for age at menarche were created using results from a 2014 study conducted 

by the Reproductive Genetics (ReproGen) consortium[72]. The ReproGen meta-

analysis included 182,416 women of European descent from 57 studies imputed to 

HapMap Phase 2 CEU build 35 or 36 with at total of 2,441,815 autosomal SNPs. Birth 

year was the only covariate included to allow for the secular trends in menarche timing. 

The study reported 3,915 genome-wide significant SNPs. Of these, the authors 

identified 123 independent signals for age at menarche, which they assessed further 

in an independent sample of 8,689 women from the EPIC-InterAct study. The PGSs 

contain 777,339 SNPs that overlapped between the ELSA genetic database and the 

GWAS meta-analysis; these SNPs were included in the PGS for this phenotype.  

 

3.3.10.3. Age at first birth – Female & Male  

PGSs for the Age at First Birth (AFB) for women and men were created using the 

GWAS summary statistics conducted by Barban et al. (2016)[73]. The total sample 

size of the meta-analysis for AFB was n=251,151. Cohorts uploaded results imputed 

using the HapMap 2 CEU (r22.b36) or 1000G reference sample. The analyses were 

adjusted for sex, birth year, and cohort specific covariates. The PGS for AFB for female 

participants contain 789,658 SNPs that overlapped between the ELSA genetic 

database and the GWAS meta-analysis; for the male participants, the PGS contained 

787,685 SNPs that overlapped between the ELSA genetic database and the GWAS 

meta-analysis. These SNPs were included in the PGS for AFB phenotype.  

 

3.3.10.4. Number of children ever born (NEB) – Female & Male 

PGSs for the number of children ever born (NEB) for women and men were created 

using the GWAS summary statistics conducted by Barban et al. (2016)[73]. The total 

sample size of the meta-analysis was n=343,072 for NEB pooled. Cohorts uploaded 
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results imputed using the HapMap 2 CEU (r22.b36) or 1000G reference sample. The 

analyses were adjusted for sex, birth year, and cohort specific covariates. The PGS 

for NEB for female participants contains 793,718 SNPs that overlapped between the 

ELSA genetic database and the GWAS meta-analysis; for the male participants, the 

PGS contained 793,205 SNPs that overlapped between the ELSA genetic database 

and the GWAS meta-analysis. These SNPs were included in the PGS for NEB 

phenotype.  

 

Figure 36. Distribution of PGS for reproductive factors 
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Table 20.  The summary statistics for PGS reproductive factors 

PGS 

 
Gender Sample size Minimum Maximum Range Median Mean SE (mean) 

Age at Menopause  Female 3878 19882.8 20418.7 535.9 20179.8 20178.0 1.10 

Age at Menarche Male 3878 6123.6 6273.2 149.6 6192.6 6192.8 0.30 

Age at first birth 
Female 3878 659778 674336 14558 667389 667371.7 34.31 

Male 3305 628409 644380 15971 636385 636376.4 34.53 

Number of children 

ever born 

Female 3878 640948 655822 14874 649140 649185.0 31.96 

Male 3305 634040 647545 13505 640960 640967.4 34.10 

PGS, polygenic score; SE, standard error 

 

 

Table 21.  Sources of the GWAS summary statistics used for PGS reproductive factors 

Phenotype Consortium 
GWAS 
SNPs 

Overlapping 
with ELSA 

GWAS meta-analysis citation Source of base data 

 
Age at Menarche ReproGen 2,441,815 793,272 

Perry et al. (2014)[72] 

http://www.reprogen.org/data_download.html 
(Menarche_Nature2014_GWASMetaResults_1

7122014.txt). 
 Age at Menopause ReproGen 2,418,695 777,339 http://www.reprogen.org/data_download.html. 
 

Age at first birth – Female - 2,470,136 789,658 

Barban et al. (2016)[73] 

ftp://ftp.ebi.ac.uk/pub/databases/gwas/summar
y_statistics/BarbanN_27798627_GCST006045 

 
Age at first birth – Male - 2,465,140 787,685 

ftp://ftp.ebi.ac.uk/pub/databases/gwas/summar
y_statistics/BarbanN_27798627_GCST006045 

 
Number of children – 
Female 

- 2,471,862 793,718 
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summar
y_statistics/BarbanN_27798627_GCST006047

/ 
 

Number of children – Male - 2,470,443 793,205 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

5695684/ 

ReproGe; Reproductive Genetics  consortium 

 

ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/BarbanN_27798627_GCST006045
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/BarbanN_27798627_GCST006045
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/BarbanN_27798627_GCST006045
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/BarbanN_27798627_GCST006045
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/BarbanN_27798627_GCST006047/
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/BarbanN_27798627_GCST006047/
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/BarbanN_27798627_GCST006047/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695684/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695684/
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3.3.11. INTELLIGENCE  

3.3.11.1. Intelligence (2018) 

PGSs for subjective intelligence were created using results from the largest genetic 

association study of intelligence to date that encompassed data from 14 independent 

epidemiological cohorts of European ancestry and 9,295,118 genetic variants passing 

quality control[74]. Intelligence was assessed using various neurocognitive tests, 

primarily gauging fluid domains of cognitive functioning. In this meta-analysis, 12,110 

variants indexed by 242 lead SNPs in approximate linkage equilibrium (PGWAS 

<5×10−8). The distribution of PGS for intelligence in ELSA is depicted in Figure 37. 

GWAS summary statistics contained 9,295,118 SNPs; of these, 1,269,550 SNPs 

overlapped with the ELSA genetic database and were included in the PGS for 

Intelligence phenotype.  

 

Figure 37.  Distribution of PGS for Intelligence (2018) 

 
 

3.3.5.5. General Cognition (2015) 

The PGSs for general cognition were created using results from a 2015 GWAS conducted 

across 31 cohorts by the Cohorts for Heart and Aging Research in Genomic Epidemiology 

(CHARGE) consortium[75]. A total of 53,949 participants undertook multiple, diverse cognitive 

tests from which a general cognitive function phenotype was created within each cohort by 

principal component analysis. Thirteen genome-wide significant SNPs in three separate 

regions previously associated with neuropsychiatric phenotypes were reported. Adjustments 

for age, sex, and population stratification were included in study specific GWAS association 

analyses. Cohort-specific covariates - for example, site or familial relationships - were also 

fitted as required. The distribution of PGS for General Cognition in ELSA is depicted in Figure 
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38. A total of 2473946 SNPs were included in the CHARGE meta-analysis summary statistics. 

Of these, 795,327 SNPs overlapped with the ELSA genetic database and were included in the 

PGS for the general cognition phenotype.  

 

 

Figure 38.  Distribution of PGS for General Cognition (2015) 

 
 

 

3.3.5.6. General Cognition (2018) 

The PGSs for general cognition were created using results from a 2018 GWAS; it included 

300,486 individuals of European ancestry from 57 population-based cohorts brought together 

by the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE), the 

Cognitive Genomics Consortium (COGENT) consortia, and UK Biobank[76]. All individuals 

were aged between 16 and 102 years. Exclusion criteria included clinical stroke (including 

self-reported stroke) or prevalent dementia. However, the ELSA study was part of the original 

analyses. We therefore requested that the consortia to repeat the analysis with ELSA 

removed. The PGSs for general cognition presented here are based on summary statistics 

that did not include ELSA. Genotype–phenotype association analyses were performed within 

each cohort, using an additive model, on imputed SNP dosage scores. Adjustments for age, 

sex, and population stratification were included in the model for each cohort. Cohort-specific 

covariates - for example, site or familial relationships - were also fitted as required. The 

distribution of PGS for General Cognition in ELSA is depicted in Figure 39. A total SNPs 

included in the meta-analysis summary statistics, 1348174 SNPs overlapped with the ELSA 

genetic database and were included in the PGS for the general cognition phenotype.  
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Figure 39.  Distribution of PGS for General Cognition (2018)  
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Table 22.  Descriptive statistics for PGS for intelligence and general cognition  

PGS  Minimum Maximum Range Median Mean SE (mean) 

Intelligence  5851.6 5920.5 68.9 5885.5 5885.7 0.11 

General Cognition (2015) 5798.4 5932.8 134.3 5861.6 5861.4 0.19 

General Cognition (2018) 1273530 1318000 44470 1291970.0 1292488.7 73.4 

PGS, polygenic score; SE, standard error 

 

 

Table 23.  Sources of the GWAS summary statistics used for PGS intelligence and general cognition 

Phenotype Consortium 
GWAS 
SNPs 

Overlappin
g with 
ELSA 

GWAS meta-analysis 
citation 

Source of base data 

Intelligence  

UK Biobank, COGENT, 
RS,GENR,STR,S4S,HiQ/HRS,TEDS, 

DTR, IMAGEN, 
BLTS,NESCOG,GfG,STA 

 

9,285,776 1,269,550 
Savage et al (2018) 

[74] 

Summary statistics are 

available for download 

from https://ctg.cncr.nl/ 

General cognitive function (2015) CHARGE 2,473,946 795,327 
Davies et al. 

(2015)[75] 

https://www.ncbi.nlm.nih.gov/p

rojects/gap/cgi-

bin/study.cgi?study_id=phs00

0930.v6.p1 

General cognitive function (2018) CHARGE & COGENT 12,240,776 1,348,174 Davies et al (2018)[76] On request from the authors 

UK Biobank (UKB), COGENT, Cognitive Genomics Consortium; RS; Rotterdam Study; GENR, Generation R Study; STR, Swedish Twin Registry; 

S4S, Spit for Science; HiQ/HRS, High-IQ/Health and Retirement Study; TEDS, Twins Early Development Study; DTR Danish Twin Registry; 

IMAGEN; BLTS, Brisbane Longitudinal Twin Study; NESCOG Netherlands Study of Cognition, Environment, and Genes; GfG, Genes for Good; 

STSA, Swedish Twin Studies of Aging; CHARGE, Heart and Aging Research in Genomic Epidemiology consortium; CORNET, CORtisol NETwork 

consortium 

 

 

https://ctg.cncr.nl/


77 

3.3.12. LONGEVITY  

3.3.12.1. Longevity (2015) 

The longevity PGSs were created using summary statistics from a 2015 GWAS conducted by 

the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) 

consortia[77]. The GWAS summary statistics for this phenotype were obtained from the 

GRASP (Genome-Wide Repository of Associations Between SNPs and Phenotypes) [78]. The 

GWAS meta-analysis on longevity used the sample of 6,036 longevity cases and 3,757 

controls accumulated across 11 studies. The data was imputed to ~2.5 million SNPs using the 

HapMap 22 CEU (Build 36) genotyped samples as a reference. Logistic regression was used 

to test each SNP for association with longevity using an additive model adjusting for sex and 

PCs to adjust for population stratification. None of the SNP-longevity associations reached the 

genome-wide significance threshold of 5×10−8 in the discovery phase. Suggestive evidence 

was found for the involvement of SNPs near CADM2 and GRIK2, and the associations of 

APOE and FOXO3 with longevity were confirmed. A total of 2588525 SNPs were included in 

the summary statistics. Of these, 757472 SNPs overlapped with the ELSA genetic database 

and were included in the PGS for this phenotype.  

 

3.3.12.2. Longevity (2019)  

In this GWAS meta-analysis[79], cohorts that participated in one or more of the previously 

published GWA studies on longevity were included; these were:[77, 80, 81]. Cases were 

individuals who lived to an age above the 90 th percentile based on cohort life tables from 

census data from the appropriate country, sex, and birth cohort. Controls were individuals who 

died at or before the age at the 60th percentile or whose age at the last follow-up visit was at 

or before the 60th percentile age. Hence, the number of selected cases and controls is defined 

by the ages of their birth cohort corresponding to the 60th or 90th percentile age and is 

independent of the study population used (i.e., the number of controls and cases within a study 

population is not based on the percentiles of that specific population, but instead on that of 

their birth cohorts). Here, the study encompassed 11,262 cases surviving at or beyond the 

age corresponding to the 90th survival percentile, respectively, and 25,483 controls whose age 

at death or at last contact was at or below the age corresponding to the 60th survival 

percentile.  

 

3.3.12.3. Parental death (2017) 

Genetic data was available on 488,377 UK Biobank participants after genotype calling and 

quality control performed centrally by the UK Biobank team. In total, 451,447 participants 

identified as ‘white European’ through self-report and verified through principal components 

analysis based on genotypes were selected[82]. Briefly, principal components were generated 

in the 1000 Genomes Cohort using high-confidence SNPs to obtain their individual loadings. 

These loadings were then used to project all the UK Biobank samples into the same principal 

component space and individuals were then clustered using principal components 1 to 4. 

Related individuals were identified through kinship analysis, although these participants were 

included in genome-wide analysis using BOLT-LMM, those related to the third-degree or 

closer were excluded in sensitivity analyses. Imputation of 39,235,157 genetic variants from 

the Haplotype Reference Consortium panel was performed using IMPUTE centrally by the UK 

Biobank team. After filtering for variants with MAF ≥0.1%, missingness <1.5%, imputation 
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quality >0.1 and with Hardy-Weinberg equilibrium (HWE) P>1×10−6 within the white British 

participants 11,516,125 imputed autosomal variants were eligible for the analyses. 

Additionally, data were directly utilized from the microarrays for variants on the X (n=19,381) 

and Y (n=284) chromosomes, and on the mitochondrial genome (n=135), which were 

unavailable in the imputed dataset. Participants were asked the age at which their parents had 

died (or their current age if still alive). Analyses were performed separately on mother's age 

at death and father's age at death, and also on a combined phenotype. To reduce the effect 

of higher ages at death of mothers (compared to the fathers) the mothers and fathers age at 

deaths were z-transformed before combining the z-scores into a single summed phenotype. 

Offspring of parents who died prematurely were excluded because the cause of death of the 

participant's parents was not asked, so we could not exclude accidental deaths explicitly. 
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Table 24.  The descriptive statistics for PGS longevity  

Phenotypes  Sample Size Minimum Maximum Range Median Mean SE (mean) 

Longevity (2015) 7183 619.4 1334.4 714.9 976.5 977.2 1.03 

Longevity (2019)  7183 36405.9 36951.1 545.2 36700.9 36699.0 0.92 

Parental death (2017) 7183 7689.7 7814.4 124.7 7753.6 7753.4 0.21 

PGS, polygenic score; SE, standard error 

 

 

Table 25.  Sources of the GWAS summary statistics used for PGS longevity  

Phenotype Consortium 
GWAS 

SNPs 

Overlapping 

with ELSA 

GWAS meta-analysis 

citation 
Source of base data 

Longevity (2015) - - - Broer et al (2015)[66] https://grasp.nhlbi.nih.gov/FullResults.aspx 

Longevity (2019)  
- 7,508,009 1,329,210 Deelen et al. (2019)[79] 

https://grasp.nhlbi.nih.gov/FullResults.aspx; 

https://www.longevitygenomics.org/downloads 

Parental death (2017) UK Biobank 9,085,648 1,329,730 Pilling et al (2017)[82] https://doi.org/10.6084/m9.figshare.5439382.v1 

 

 

https://grasp.nhlbi.nih.gov/FullResults.aspx
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4. SET UP 

4.1. Download the PGSs in ELSA  

By downloading these freely provided datasets, you agree to use their contents only for 

research and statistical purposes, making no effort to identify the respondents. The generated 

PGSs are available for download in three data formats (STATA, SPSS, and EXCEL):  

1. List_PGS_SCORES_ELSA_JULY_2022.dta  

2. List_PGS_SCORES_ELSA_JULY_2022.dav 

3. List_PGS_SCORES_ELSA_JULY_2022.xlsx  

All data files are keyed on unique identifier (IDAUNIQ).  

 

4.2. Why to use principal component in association analyses?  

Population stratification occurs when the differences in the allele frequency between cases 

and controls are due to systematic ancestry differences leading to spurious associations in 

studies[7]. To account for any ancestry differences in genetic structures that could bias the 

results, it is advisable to adjust the association analyses for principal components (PCs) (for 

more detail, please refer to page 13). Some studies adjust for all 10 PCs; others tend to use 

the first 4 PCs; while some recommend checking whether ancestry PCs associate with the 

phenotypes under investigation. If they do, or the cohort under investigation has known issues 

with stratification, then it is advisable to adjust for these PCs. Ultimately, the researchers will 

need to make the decision whether to use PCs in their analyses, and if so, how many.  

In ELSA we have generated 10 ancestry principal components. These are provided in three 

data formats data formats (STATA, SPSS, and EXCEL):  

1. Principal_Components ELSA_JULY_2022.dta  

2. Principal_Components ELSA_JULY_2022.sav  

3. Principal_Components ELSA_ ULY_2022.xlsx  

All data files are keyed on unique identifier (IDAUNIQ). 

 

4.3.Additional data available  

To improve genome coverage, we imputed untyped quality-controlled using the University of 

Michigan Imputation Server[83]. To estimate genotypes that were not assayed, imputation 

was performed on the Michigan Imputation Server[83] running SHAPEIT for pre-phasing[84], 

and Minimac3 for imputation[85, 86] to the Haplotype Reference Consortium (HRC.r1-

1.GRCh37)[83, 87]; all variants align to human genome build 19 (hg19). Post-imputation, we 

kept variants that were genotyped or imputed at INFO>0.95, in low linkage disequilibrium 

(R2<0.1) and with Hardy-Weinberg Equilibrium p-value>10−5. After the sample quality control 

7179780 variants were retained for further analyses. To account for any ancestry differences 

in genetic structures that could bias results, principal components analysis was conducted 

retaining top principal components (PCs)[7]. After the sample quality control 7,179,780 

variants were retained for further analyses. These data are available for researchers if they 

wish to use them in their work.  

 

4.4. If You Need to Know More  

This document is intended to serve as a brief overview to provide guidelines for using the 

ELSA Polygenic Scores data product in the ELSA study. If you have questions or concerns 
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that are not adequately covered here, or if you have any comments, please contact us. We 

will do our best to provide answers.  

 

4.5. Contact Information  

If you need to contact us, you may do so by one of the methods listed below.  

Email: Please send your concerns or requests for further information to Dr Olesya Ajnakina 

using the email address: o.ajnakina@ucl.ac.uk 

 

Post: Please send your concerns or requests for further information to Dr Olesya Ajnakina 

using the postal address:  

Department of Behavioural Science and Health 

Institute of Epidemiology and Health Care 

University College London 

Postal address: UCL, Gower Street, London WC1E 6BT 

mailto:o.ajnakina@ucl.ac.uk
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6. SUPPLEMENTARY MATERIAL 

Supplementary Figure 1.  Depicts distribution of 10 principal components once 65 
individuals with ancestral admixture were removed from the sample.  
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